Evident LogoOlympus Logo
애플리케이션 노트

Automated Analysis of Label-Free Organoid Imaging Data


Establish efficient label-free image batch analysis workflows to measure organoid drug responses

Introduction

3D in vitro models, such as spheroids and organoids, provide researchers with a more physiologically relevant microenvironment to study than traditional 2D cell culture models. However, creating an efficient workflow for measuring organoid responses can be challenging.

In this study, we used cellSens software’s macro function to make batch image analysis workflows for label-free organoid data. We then compared the results to a CellTiter-Glo 3D cell viability assay to assess the analysis speed and determine the accuracy and sensitivity of object detection and measurement.

Application Workflow

Application Workflow

Benefits

  • Label-free organoid imaging
  • Automated image processing, segmentation, measurement, and data export
  • Batch analysis to expedite the drug screening process

Methods

Organoid culture

Colon cancer patient-derived organoids were grown in a Costar 96-well plate. Some wells were treated with staurosporine (ST) to compare organoids’ responses to the treatments.

Imaging

Organoid imaging was performed in the transmission detector of the Olympus FV3000 confocal laser scanning microscope. A far-red laser (640 nm) and a 4x objective were used to generate transmitted channel images. The image was acquired with a Z-stack because the organoids are located at various Z-positions. The step size was 5 μm.

Image Analysis Using the cellSens Macro Function

Performing image analysis with the cellSens macro function only requires two steps: recording the macro and running batch analysis.

1. Record the macro

In the Macro Manager, multiple steps can be recorded as a set of commands. In this analysis, we recorded the following commands:

  1. Select Channel: The transmitted channel was selected to analyze the brightfield images.
  2. Sobel: Sobel filter was applied as an ‘edge detection filter’.
  3. EFI Processing: Extended focus image (EFI) processing was applied to make a 2D projection.
  4. Segment: Automatic threshold was applied to segment organoids. The fill holes option was used to fill the empty area of the detected organoids.
  5. Median: The median filter was applied to smooth the edge of the object mask and remove small noises.
  6. Count and Measure: Organoid number and morphological features were measured. A size filter can be applied to select certain organoid populations.
  7. Export to Workbook: The measurements were exported to a spreadsheet.

Figure 1: cellSens image analysis steps recorded as a macro process

Figure 1: cellSens image analysis steps recorded as a macro process

2. Run batch analysis

Using the batch run mode in the macro function, we ran the recorded macro on multiple images in a specified folder. The analysis result was exported automatically as a spreadsheet.

Figure 2: Batch analysis steps using a recorded macro process

Figure 2: Batch analysis steps using a recorded macro process

Figure 2: Batch analysis steps using a recorded macro process

Figure 2: Batch analysis steps using a recorded macro process

Figure 2: Batch analysis steps using a recorded macro process

CellTiter-Glo 3D viability assay

Separate 96-well organoid plates were prepared for each measurement day. A CellTiter-Glo 3D reagent was added to each well, and the cell viability signal (ATP level) was measured using a multiwell plate reader.

Results

Organoid size

Organoid size-related parameters (area, perimeter, and radius) increased over time in the untreated organoid culture. 0.1 μM ST treatment induced cell and organoid death. Organoid growth was completely inhibited, and there was no significant organoid size increase in the ST-treated organoids.

Figure 3: Control: n=370 0.1 μM ST: n=234. Changes of organoid size-related parameters over time with untreated and 0.1 μM ST-treated organoids.

Figure 3: Control: n=370 0.1 μM ST: n=234. Changes of organoid size-related parameters over time with untreated and 0.1 μM ST-treated organoids.

Organoid morphology

Organoid morphology-related parameters (shape factor and sphericity) were measured. The shape factor value was higher in the ST-treated organoids, suggesting that those organoids have a rounder shape. Lower shape factor values in the untreated organoids suggest that these organoids have a more asymmetric and branched shape. There was no significant change in the sphericity value between untreated and ST-treated organoids.

Figure 4: Measurements of organoid morphology-related parameters over time

Figure 4: Measurements of organoid morphology-related parameters over time

Comparison to a cell viability assay

Organoid growth was measured using both the CellTiter-Glo 3D and imaging method. Organoid growth difference was shown earlier in the cellSens analysis (area). Variations of each data point were smaller in the cellSens quantifications because the imaging method uses the same plate over time. Cell viability measurement is an endpoint assay and uses multiple plates at each time point, increasing the variability.

Figure 5: Comparison of cell viability assay and imaging-based cellSens analysis

Figure 5: Comparison of cell viability assay and imaging-based cellSens analysis

Conclusion

With cellSens software’s macro function, we could establish a fast imaging and 2D batch image analysis process with label-free data. The accuracy and sensitivity of object detection and measurement in cellSens software were higher than in the CellTiter-Glo 3D cell viability assay. Furthermore, cellSens can perform multi-parametric analyses made possible using imaging data versus the single parameter readout from CellTiter-Glo. Also, we confirmed that the analysis can be easily performed through a few mouse clicks without knowledge of the macro programming language.

Authors

Seungil Kim, Brandon Choi, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA

Shohei Imamura, Olympus America

이 애플리케이션에 사용되는 제품

이미징 소프트웨어

cellSens

직관적인 작동 및 원활한 워크플로를 제공하는 cellSens 소프트웨어의 사용자 인터페이스는 맞춤 설정이 가능하기 때문에 레이아웃을 제어할 수 있습니다. cellSens 소프트웨어는 여러 가지 패키지로 제공되며 특정한 이미지화 요구 사항에 최적화된 다양한 기능이 포함되어 있습니다. 그래픽 실험 관리자 및 웰 탐색기 기능은 5D 이미지 획득을 용이하게 합니다. TruSight™ 디콘볼루션을 통해 향상된 해상도를 확보하고 콘퍼런스 모드를 사용하여 이미지를 공유하세요.

  • TruAI™ 딥러닝 분할 분석을 통한 실험 효율 개선으로 라벨 없는 핵 검출 및 세포 계수를 제공하세요.
  • 모듈식 이미지화 소프트웨어 플랫폼
  • 사용자 중심의 인터페이스로 직관적인 애플리케이션
  • 광범위한 기능 세트는 간단한 스냅샷과 고급 다차원 실시간 실험을 지원

성공적으로 즐겨찾기에 추가하였습니다.

즐겨찾기닫기

Maximum Compare Limit of 5 Items

Please adjust your selection to be no more than 5 items to compare at once

Sorry, this page is not
available in your country.

죄송합니다. 이 페이지는 해당 국가에서 사용할 수 없습니다.