Evident LogoOlympus Logo

Selected Literature References

Section Overview:

A number of high-quality review articles on multiphoton fluorescence microscopy have been published by leading researchers in the field. This section contains periodical location information about these articles, as well as providing a listing of selected original research reports from this cutting-edge field of research.

Books

  • Topics in Fluorescence Spectroscopy. Volume 5, Nonlinear and Two-Photon-Induced Fluorescence, Lakowicz, J. (ed), Plenum Press, New York, 544 pages (1997).

Review Articles

  • Principles of multiphoton-excitation fluorescence microscopy., Denk, W., Imaging Neurons: A Laboratory Manual, Yuset, R., Lanni, F., and Konnerth, A. (eds), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pages 17.1-17.8 (2000).
  • Multiphoton microscopy in life sciences., König, K., Journal of Microscopy, Volume 200, Part 2, The Royal Microscopical Society, London, United Kingdom, pages 83-104 (2000).
  • Advances in multiphoton imaging., Krueger, A., American Laboratory, International Scientific Communications, Shelton, Connecticut, pages 36-39, April (2000).
  • Lasers for multiphoton microscopy., Wise, F., Imaging Neurons: A Laboratory Manual, Yuset, R., Lanni, F., and Konnerth, A. (eds), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pages 18.1-18.9 (2000).
  • Imaging living cells and tissues by two-photon excitation microscopy., Piston, D. , Trends in Cell Biology, 9:, 66-69 (1999).
  • Multifocal multiphoton microscopy., Andreoni, A., Cubeddu, R., De Silverstri, S., Laporta, P. and Svelto, O., Optics Letters: 23, 655-657 (1998).
  • Multiphoton excitation fluorescence microscopy., Centonze, V. and White, J., Cells: A Laboratory Manual, Part 2. Light Microscopy and Cell Structure, Spector, D., Goldman, R., and Leinwand, L., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pages 97.1-97.17 (1998).
  • Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging., Straub, M. and Hell, S., Bioimaging: 6, 177-185 (1998).
  • Multiphoton excitation of molecular fluorophores and non-linear laser microscopy., Xu, C. and Webb, W., Topics in Fluorescence Spectroscopy, Volume 5: Non-Linear and Two-Photon Induced Fluorescence, Lakowicz, J. (ed), John Wiley and Sons, New York, pages 471-540 (1997).
  • Photon upmanship: Why multiphoton imaging is more than a gimmick., Denk, W. and Svoboda, K., Neuron: 18, 351-357 (1997).
  • Three-photon excitation microscopy. Theory, experiments and applications., Schrader, M., Bahlmann, K. and Hell, S., Optik: 104, 116-124 (1997).
  • Two-photon near-infrared excitation in living cells., König, K., J. Near Infrared Spectroscopy: 5, 27-34 (1997).
  • Two-photon fluorescence: a new dimension for microscopy., Dixon, A., International Laboratory, 13-16, July (1997).
  • Three-photon excitation in fluorescence microscopy., Hell, S., Bahlmann, K., Schrader, M., Soini, A., Malak, H., Gryczynski, I. and Lakowicz, J., Journal of Biomedical Optics: 1, 71-74 (1996).
  • Resolution in three-photon fluorescence scanning microscopy., Gu, M., Optics Letters: 21, 988-990 (1996).
  • Two-photon excitation microscopy., Piston, D., Fluorescence Imaging Spectroscopy and Microscopy. Chemical Analysis Series, Volume 137, Wang, X. and Herman, B. (eds), John Wiley and Sons, New York, pages 253-272 (1996).
  • Vital imaging: two photons are better than one., Potter, S., Current Biology, Volume 6, Current Biology, Ltd., London, United Kingdom, pages 1595-1598 (1996).
  • Two-photon molecular excitation in laser-scanning microscopy., Denk, W., Piston, D., and Webb, W., Handbook of Biological Confocal Microscopy, Pawley, J. (ed), Plenum Press, New York, pages 445-458 (1995).
  • Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry., Williams, R., Piston, D. and Webb, W., The FASEB Journal, Volume 8, Federation of American Societies for Experimental Biology, Bethesda, Maryland, pages 804-813 (1994).
  • Two-photon spectroscopy of protein-bound chromophores., Birge, R., Acc. Chem. Res.: 19, 138 (1986).
  • Two-photon molecular spectroscopy., Friedrich, D., J. Chem. Educ.: 59 (6), 472 (1982).
  • Two-photon molecular spectroscopy., Friedrich, D. and McClain, W., Annu. Rev. Phys. Chem.: 31, 559 (1980).

Original Research Reports

  • Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses., Oehring, H., Riemann, I., Fischer, P., Halbhuber, K. and König, K., Scanning: 22, 263-270 (2000).
  • Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two-photon photolysis., Furuta, T., Wang, S., Dantzker, J., Dore, T., Bybee, W., Callaway, E., Denk, W. and Tsien, R., Proc. Natl. Acad. Sci. (USA): 96, 1193-1200 (1999).
  • Characterisation of the activity of a plastid targeted green fluorescent protein in Arabidopsis. , Tirlapur, U., Dahse, I., Reiss, B. and Oelmuller, R., Eur. J. Cell Biol.: 78, 233-240 (1999).
  • Photolysis of caged calcium in femtoliter volumes using two-photon excitation., Brown, E., Shear, J., Adams, S., Tsien, R., and Webb, W., Biophys. J.: 76, 489-499 (1999).
  • Femtosecond two-photon excited fluorescence of melanin., Teuchner, K., Freyer, W., Leupold, D., Volkmer, A., Birch, D., Altmeyer, P., Stücker, M. and Hoffmann, K. Photochem. Photobiol.: 70, 146-151 (1999).
  • Intracellular nanosurgery with near infrared femtosecond laser pulses., König, K., Riemann, I., Fischer, P. and Halbhuber, K., Cell. Mol. Biol.: 45, 195-201 (1999).
  • Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability., Squirrel, J., Wokosin, D., White, J. and Bavister, B., Nature Biotechnol.: 17, 762-763 (1999).
  • Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation., Schwille, P., Haupts, U., Maiti, S. and Webb, W., Biophys. J.: 77, 2251-2265 (1999).
  • Near infrared femtosecond laser pulses as a novel non-invasive means for dye-permeation and 3D imaging of localised dye-coupling in the Arabidopsis root meristem., Tirlapur, U. and König, K., Plant J.: 20, 363-370 (1999).
  • Photodynamic therapy by non-resonant two-photon excitation., König, K., Riemann, I. and Fischer, P., SPIE Proceed.: 3592, (1999).
  • Photodynamic therapy with ultrafast lasers., Wachter, E., Petersen, M. and Dees, H., SPIE Proceed.: 3616, 66-74 (1999).
  • Picosecond multiphoton scanning near-field microscopy., Jenei, A., Kirsch, A., Subramaniam, V., Arndt-Jovin, D. and Jovin, T., Biophys. J.: 76, 1092-1100 (1999).
  • Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes., König, K., Becker, T., Fischer, P., Riemann, I. and Halbhuber, K., Optics Letters: 24, 113-115 (1999).
  • Spread of excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo., Svoboda, K., Helmchen, F., Denk, W. and Tank, D., Nat. Neurosci: 2, 67-73 (1999).
  • The motor protein myosin-I produces its working stroke in two steps., Veigel, C., Coluccio, L., Jontes, J., Sparrow, J., Milligan, R. and Molley, J., Nature: 398, 530-533 (1999).
  • Two-photon imaging in living brain slices., Mainen, Z., Maletic-Savatic, M., Shi, S., Hayashi, Y., Mailinow, R. and Savoboda, K., Methods: 18, 231-239 (1999).
  • Two-photon multilayer bit data storage by use of continuous wave illumination., Gu, M. and Day, D., SPIE Proceed.: 3749, 444-445 (1999).
  • Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with chameleons., Fan, G., Fujisaki, H., Miyawaki, A., Tsay, R., Tsien, R. and Ellisman, M., Biophys. J.: 76, 2412-2420 (1999).
  • 4Pi-confocal imaging in fixed biological specimens., Schrader, M., Bahlmann, K., Giese, G. and Hell, S., Biophys. J.: 75, 1659-1668 (1998).
  • Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propogating action potentials and subthreshold excitatory postsynaptic potentials., Koester H. and Sakmann B., Proc. Natl. Acad. Sci. (USA): 95, 9596-9601 (1998).
  • Continuous wave excitation two-photon fluorescence microscopy exemplified with the 647 nm ArKr laser line., Booth, M. and Hell, S., Journal of Microscopy: 190, 298-304 (1998).
  • Continuous wave two-photon scanning near-field optical microscopy., Kirsch, A., Subramaniam, V., Striker, G., Schnetter, C., Arndt-Jovin, D. and Jovin, T., Biophys. J.: 75, 1513-1521 (1998).
  • Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope., Straub, M. and Hell, S., Appl. Phys. Lett.: 73, 1769-1771 (1998).
  • Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in guinea-pig cardiac myocytes., Lipp, P. and Niggli, E., J. Physiol.: 508, 801-809 (1998).
  • Heating by absorption in the focus of an objective lens., Schönle, A. and Hell, S., Optics Letters: 23, 325 (1998).
  • Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent protein., Llopis, J., McCaffery, J., Miyawaki, A., Farquhar, M. and Tsien, R., Proc. Natl. Acad. Sci. (USA): 95, 6803-6808 (1998).
  • Multiphoton excitation provides optical selections from deeper within scattering specimens than confocal imaging., Centonze, V. and White, J., Biophys. J.: 75, 2015-2024 (1998).
  • New time-resolved techniques in two-photon microscopy., So, P.T, König, K., Berland, K., Dong, C., French, T., Buehler, C., Ragan, T. and Gratton, E., Cell. Mol. Biol.: 44, 771-794 (1998).
  • Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration., Schrader, M., van der Voort, H.T. and Hell, S., J. Appl. Phys.: 84, 4033-4042 (1998).
  • Time-gated autofluorescence microscopy of motile green microalga in an optical trap., König, K., Boehme, S., Leclerc, N. and Ahuja, R., Cell. Mol. Biol.: 44, 763-770 (1998).
  • Two-photon near and far-field fluorescence microscopy with continuous-wave excitation., Hell, S., Booth, M., Wilms, S., Schnetter, C., Kirsch, A., Arndt-Jovin, D. and Jovin, T., Optics Letters: 23, 1238-1240 (1998).
  • Cellular response to near infrared femtosecond laser pulses in two-photon microscopes., König, K., So, P., Mantulin, W., Tromberg, B., and Gratton, E., Optics Letters: 22, 135 (1997).
  • Comparason of two-photon excitation laser scanning microscopy in 3D calcium imaging using the fluorescence indicator Indo-1., Sako, Y., Sekihata, A., Yanagisawa, Y., Yamamoto, M., Shimada, Y., Ozaki, K. and Kusumi, A., Journal of Microscopy: 185, 9-20 (1997).
  • Measuring serotonin distribution in live cells with three-photon excitation., Maiti, S., Shear, J., Williams, R., Zipfel, W. and Webb, W., Science: 275, 530-532 (1997).
  • Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin., Masters, B., So, P. and Gratton, E., Biophys. J.: 72, 2405-2412 (1997).
  • Simultaneous two-photon activation of type I photodynamic therapy agents., Fisher, W., Partridge, W., Dees, C. and Wachter, E., Photochem. Photobiol.: 66, 141-155 (1997).
  • 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope., König, K., Simon, U. and Halbhuber, K., Cell. Mol. Biol.: 42, 1181-1194 (1996).
  • Calcium imaging of single stereocilia in hair cells: Localization of transduction channels at both ends of tip links., Denk, W., Holt, J., Shepherd, G. and Corey, D., Neuron: 15, 1311-1321 (1996).
  • Construction of a two-photon microscope and optimisation of illumination pulse duration., Soeller, C. and Cannell, M., Eur. J. Physiol.: 432, 555-561 (1996).
  • Direct measurement of coupling between dendritic spines and shaft., Svoboda, K., Tank, D. and Denk, W., Science: 272, 716-719 (1996).
  • Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy., Potter, S., Wang, C., Garrity, P. and Fraser, S., Gene: 173, 25-31 (1996).
  • Measurement of two-photon cross sections., Xu, C. and Webb, W., J. Opt. Soc. Am. B.: 13 , 481-491 (1996).
  • Multicolor spectral karyotyping of human chromosomes., Schröck, E., du Manoir, S., Veldman, T., Schoell, B., Weinberg, J., Ferguson-Smith, M., Ning, Y., Ledbetter, D., Bar-Am., I., Soenksen, D., Garaini, Y. and Ried, T., Science: 273, 494-497 (1996).
  • Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets., Bennett, B., Jetton, T., Ying, G., Magnuson, M. and Piston, D., J. Biol. Chem.: 271, 3647-3651 (1996).
  • The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry., Summers, R., Piston, D., Harris, K., John, B. and Morrill, J., Develop. Biol.: 175, 177-183 (1996).
  • Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser., Wokosin, D., Centonze, V., Crittenden, S. and White, J., Bioimaging: 4, 1-7 (1996).
  • Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress., König, K., So, P., Mantulin, W., Tromberg, B. and Gratton, E., Journal of Microscopy: 183, 197-204 (1996).
  • Cell damage by near-IR microbeams., König, K., Liang, H., Berns, M., and Tromberg, B., Nature: 377, 20-21 (1995).
  • Dendritic spines as basic functional units of neuronal integration., Yuste, R. and Denk, W., Nature: 375, 682-684 (1995).
  • Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation., Xu, C., Guild, J., Webb, W. and Denk, W., Optics Letters: 20 (23), 2372-2374 (1995).
  • Imaging calcium dynamics in dendritic spines., Denk, W., Yuste, R., Svoboda, K. and Tank, D., Curr. Opin. Neurobiol.: 6, 372-378 (1995).
  • Quantitative imaging of green fluorescent protein in cultured cells: Comparason of microscopic techniques, use in fusion proteins and detection limits., Niswender, K., Blackman, S., Rohde, L., Magnuson, M. and Piston, D., Journal of Microscopy: 180, 109-115 (1995).
  • Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy., Piston, D., Masters, B. and Webb, W.W., Journal of Microscopy: 178, 20-27 (1995).
  • Time-resolved fluorescence microscopy using two-photon excitation., So, P., Yu, W., Berland, K., Dong, C. and Gratton, E., Bioimaging: 3, 1-15 (1995).
  • Two-photon excitation fluorescence microscopy using a semiconductor laser., Hänninen, P., Schrader, M., Soini, E. and Hell, S., Bioimaging: 3, 70-75 (1995).
  • Two types of calcium response limited to single spines in cerebellar Purkinje cells., Denk, W., Sugimori, M. and Llinás, R. Proc. Natl. Acad. Sci. (USA): 92, 8279-8282 (1995).
  • A confocal laser scanning microscope designed for indicators with ultraviolet excitation wavelengths., Niggli, E., Piston, D., Kirby, M. and Cheng, H., Am. J. Physiol.:, (1994).
  • Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy., Denk, W., Delaney, K., Gelperin, A., Kleinfeld, D., Strowbridge, B., Tank, D. and Yuste, R., J. Neurosci. Methods: 54, 151-162 (1994).
  • Background rejection and signal-to-noise optimization in the confocal and alternative fluorescence microscopes., Sandison, D. and Webb, W., Apl. Optics: 33, 603-610 (1994).
  • Continuous wave excitation two-photon fluorescence microscopy., Hänninen, P., Soini, E. and Hell, S., Journal of Microscopy: 176, 222-225 (1994).
  • Direct observation of tube-like motion of a single polymer chain., Perkins, T., Smith, D. and Chu, S., Science: 264, 819-822 (1994).
  • Nonlinear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume., Stelzer, E., Hell, S. and Lindek, S., Opt. Commun.: 104, 223-228 (1994).
  • Relaxation of a single DNA molecule observed by optical microscopy., Perkins, T., Quake, S., Smith, D. and Chu, S., Science: 264, 822-826 (1994).
  • Two-photon excitation fluorescence imaging of three-dimensional calcium-ion activity., Piston, D., Kirby, M., Cheng, H. and Lederer, W., Appl. Opt.: 33, 662-669 (1994).
  • Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distribution., Denk, W., Proc. Natl. Acad. Sci. (USA): 91, 6629-6633 (1994).
  • Fluorescence photoactivation by two-photon excitation: Kinetics of uncaging and three-dimensional point diffusion measurements., Silberzan, I., Williams, R. and Webb, W., Biophys. J.: 63, A109 (1993).
  • Observations of nuclear division of living sea urchin embryos by two-photon fluorescence microscopy., Piston, D., Summers, R. and Webb, W., Biophys. J.: 63, A110 (1993).
  • Optical trapping for chromosome manipulation: A wavelength dependence of induced chromosome bridges., Vorobjev, I., Hong, L. and Wright, W., Biophys. J.: 64, 553 (1993).
  • Recent advance of the Ti:sapphire high-repetition femtosecond optical parametric oscillator., Powers, P., Ellingson, R. and Pelouch, W., J. Opt. Soc. Am. B.: 10 (11), 2162 (1993).
  • The viability of cultured cells under two-photon laser scanning microscopy., Ridsdale, J. and Webb, W., Biophys. J.: 63, A109 (1993).
  • Three-dimensional imaging characteristics of laser scan fluorescence microscopy., Nakamura, K., Optik: 93 (1), 39 (1993).
  • Two-photon fluorescence excitation spectra of aromatic amino acids., Rehms, A. and Callis, P., Chem. Phys. Lett.: 208 (3,4), 276 (1993).
  • Two-photon laser scanning photochemical microscopy used to map the distribution of ligand gated ion channels., Denk, W., Soc. Neurosci.: 19 (1), 91 (1993).
  • Application of a femtosecond self-sustaining mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy., Curley, P., Ferguson, A., White, J. and Amos, W., Opt. Quant. Electr.: 24, 851 (1992).
  • Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation., Hell, S. and Stelzer, E., Opt. Commun.: 93, 277 (1992).
  • High-power, 62fs infrared optical papametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser., Fu, Q., Mak, G. and van Driel, H., Optics Letters: 17 (14), 1006 (1992).
  • Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy., Ried, T., Baldini, A., Rand, T. and Ward, D.C., Proc. Natl. Acad. Sci. (USA): 89, 1388-1392 (1992).
  • The development and application of photosensitive caged compounds to aid time-resolved structure determination of macromolecules., Corrie, J., Katayama, Y., Reid, G. and Anson, M., Philos. Trans. R. Soc. London A Ser: 340, 233 (1992).
  • The light microscope on its way from an analytical to a preparative tool., Greulich, K. and Weber, G., Journal of Microscopy: 167, 127-151 (1992).
  • Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser scanning microscopy., Piston, D., Sandison, D. and Webb, W., SPIE Proceed.: 1640, 379 (1992).
  • 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser., Spense, D., Kean, P. and Sibbett, W., Optics Letters: 16 (1), 42 (1991).
  • Effects of aberrating layers and tube length on confocal imaging properties., Sheppard, C. and Cogswell, C., Optik: 87 (1), 34 (1991).
  • Effects of finite-sized detector on the OTF of confocal fluorescent microscopy., Gu, M. and Sheppard, C., Optik: 89, 65-69 (1991).
  • Efficient generation of ultrashort, wavelength-tunable infrared pulses., Cheung, E. and Liu, J., J. Opt. Soc. Am.: 8 (7), 1491 (1991).
  • Photodynamic therapy using pheoporbide-a and Q-switched Nd: YAG laser on implanted human hepatocellular carcinoma., Yamashita, Y., Moriyasu, F., Ono, S., Kimura, T., Kajimura, K., Someda, H., Hamato, N., Nabeshima, M., Sakai, M. and Okuma, M., Gast. Jap.: 26, 623-627 (1991).
  • The one-point fluorescence response in confocal microscopy., Visser, T., Brakenhoff, G. and Groen, F., Optik: 87 (1), 39 (1991).
  • Three dimensional imaging of intellectual calcium activity using two-photon excitation of the fluorescent indicator dye Indo-1., Piston, D. and Webb, W., Biophys. J.: 59, 156 (1991).
  • Compartmentation of fluorescent tracers injected into the epidermal cells of Egeria densa leaves., Goodwin, P., Shepherd, V. and Erwee, M., Planta: 181, 129-136 (1990).
  • Image formation in two-photon fluorescence microscopy., Sheppard, C. and Gu, M., Optik: 86, 104-106 (1990).
  • Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience., Kennedy, J., Pottier, R. and Pross, D., Photochem. Photobiol. B.: 6, 143-148 (1990).
  • Second harmonic detection of sinusoidally modulated two-photon excited fluorescence., Freeman, R., Gilliland, D. and Lytle, F., Anal. Chem.: 62, 2216-2219 (1990).
  • Two-photon laser scanning fluorescence microscopy., Denk, W., Strickler, J., and Web, W., Science: 248, 73-76 (1990).
  • Nicotinamide adenine dinucleotide fluorescence spectroscopy., Eng, J., Lynch, R. and Balaban, R., Biophys. J.: 55, 621-629 (1989).
  • Synthesis, photochemistry, and biological activity of a caged photolabile acetylcholine receptor ligand., Milburn, T., Matsubara, N., Billington, A. and Udgaonkar, J., Biochemistry: 28, 49-58 (1989).
  • Three color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences., Nederlof, P., Robinson, D., Abuknesha, R., Wiegant, J., Hopmann, A., Tanke, H. and Raap, A., Cytometry: 10, 20-27 (1989).
  • Enhanced two-photon transitions in molecules with permanent dipole moments., Scharf, B. and Band, Y., Chem. Phys. Lett.: 144 (2), 165 (1988).
  • Light-flash physiology with synthetic photosensitive compounds., Gurney, A. and Lester, H., Physiol. Rev.: 67, 583-617 (1987).
  • Optical trapping and manipulation of single cells using infrared laser beams., Ashkin, A., Dziedzic, J. and Yamane, T., Nature: 330, 1517 (1987).
  • Optical trapping and manipulation of viruses and bacteria., Ashkin, A. and Dziedzik, J., Science: 235, 1517-1520 (1987).
  • p-bis-(1-methylstyryl)benzene as a power-squared sensor for two-photon absorption measurements between 537 nanometers and 694 nanometers., Kennedy, S. and Lytle, F., Anal. Chem.: 58, 2643 (1986).
  • Photosensitised production of superoxide anion by monochromatic (290-405 nm) ultraviolet irradiation of NADH and NADPH coenzymes., Cunningham, M., Johnson, J., Giovanazzi, S. and Peak, M., Photochem. Photobiol.: 42, 125-128 (1985).
  • Two-Photon Multicolour FISH: a versatile technique to detect specific sequences within single DNA molecules in cells and tissues., König, K., Göhlert, A., Liehr, T., Loncarevic, I. and Riemann, I., Single Mol.: 1, 41-51 (1982).
  • Two-step laser activation of hematoporphyrin derivative., Andreoni, A., Cubeddu, R., De Silverstri, S., Laporta, P. and Svelto, O., Chemical Physics Letters: 88, 37-39 (1982).
  • Initial and final molecular states as "virtual" states in two-photon processes., Mortenson, O. and Svendsen, E., J. Chem. Phys.: 74 (4), 3185 (1981).
  • A theoretical analysis of the two-photon properties of linear polyenes and the visual chromophores., Birge, R., J. Chem. Phys.: 70 (1), 165 (1979).
  • Nonlinear optical microscopy examination of structure in polycrystalline ZnSe., Hellwarth, R. and Christiansen, P., Opt. Commun.: 12 (3), 318 (1974).
  • Excited state symmetry assignment through polarized two-photon absorption studies of fluids., McClain, J. Chem. Phys.: 55 (6), 2789 (1971).

このページはお住まいの地域ではご覧いただくことはできません。

このページはお住まいの地域ではご覧いただくことはできません。