Evident LogoOlympus Logo

Fluorescent Protein Literature Sources

Section Overview:

The disciplines of cellular and molecular biology are being rapidly and dramatically transformed by the application of fluorescent proteins developed from marine organisms as fusion tags to track protein behavior in living cells. The most widely used of these probes, green fluorescent protein, can be attached to virtually any target of interest and still fold into a viable fluorescent species. The resulting chimera can be employed to localize previously uncharacterized proteins or to visualize and track known proteins to further understand critical events at the cellular and molecular levels. This section features a bibliography of literature sources for review articles and original research reports on the discovery, applications, and continued development of fluorescent proteins.

Literature Sources

  • Abad, M. F. C., Benedetto, G. D., Magalhães, P. J., Filippin, L., and Pozzan, T., Mitochondrial pH monitored by a new engineered green fluorescent protein mutant., Journal of Biological Chemistry 279: 11521-11529 (2004). | PubMed |
  • Abedi, M. R., Caponigro, G., and Kamb, A., Green fluorescent protein as a scaffold for intracellular presentation of peptides., Nucleic Acids Research 26: 623-630 (1998).| PubMed |
  • Adams, S. R., Kao, J. P. Y., Grynkiewicz, G., Minta, A., and Tsien, R. Y., Biologically useful chelators that release calcium upon illumination., Journal of the American Chemical Society 110: 3212-3220 (1988). | JACS ||
  • Akemann, W., Raj, C. D., and Knöpfel, T., Functional characterization of permuted enhanced green fluorescent proteins comprising varying linker peptides., Photochemistry and Photobiology 74: 356-363 (2001). | PubMed |
  • Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., and Miyawaki, A., An optical marker based on the UV-induced green-to-red-photoconversion of a fluorescent protein., Proceedings of the National Academy of Sciences (USA) 99: 12651-12656 (2002).| PubMed |
  • Ando, R., Mizuno, H., and Miyawaki, A., Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting., Science 306: 1370-1373 (2004).| PubMed |
  • Arimura, S., Yamamoto, J., Aida, G. P., Nakazono, M., and Tsutsumi, N., Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution., Proceedings of the National Academy of Sciences (USA) 101: 7805-7808 (2004). | PubMed |
  • Ataka, K. and Pieribone, V. A., A genetically targetable fluorescent probe of channel gating with rapid kinetics., Biophysical Journal 82: 509-516 (2002). | PubMed |
  • Bae, J. H., Pal, P. P., Moroder, L., Huber, R., and Budisa, N., Crystallographic evidence for isomeric chromophores in 3-fluorotyrosyl-green fluorescent protein., ChemBioChem 5: 720-722 (2004). | PubMed |
  • Bae, J. H., Rubini, M., Jung, G., Wiegand, G., Seifert, M. H. J., Azim, M. K., Kim, J.-S., Zumbusch, A., Holak, T. A., Moroder, L., Huber, R., and Budisa, N., Expansion of the genetic code enables design of a novel "gold" class of green fluorescent proteins., Journal of Molecular Biology 328: 1071-1081 (2003). | PubMed |
  • Baird, G. S., Zacharias, D. A., and Tsien, R. Y., Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral., Proceedings of the National Academy of Sciences (USA) 97: 11984-11989 (2000). | PubMed |
  • Baird, G. S., Zacharias, D. A., and Tsien, R. Y., Circular permutation and receptor insertion within green fluorescent proteins., Proceedings of the National Academy of Sciences (USA) 96: 11241-11246 (1999). | PubMed |
  • Baldini, G., Cannone, F., and Chirico, G., Pre-unfolding resonant oscillations of single green fluorescent protein molecules., Science 309: 1096-100 (2005). | PubMed |
  • Barondeau, D. P., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D., Structural chemistry of a green fluorescent protein Zn biosensor., Journal of the American Chemical Society 124: 3522-3524 (2002). | PubMed |
  • Barondeau, D. P., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D., Understanding GFP chromophore biosynthesis: Controlling backbone cyclization and modifying post-translational chemistry., Biochemistry 44: 1960-1970 (2005). | PubMed |
  • Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Talner, J. A., and Getzoff, E. D., Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures., Proceedings of the National Academy of Sciences (USA) 100: 12111-12116 (2003). | PubMed |
  • Bates, M., Blosser, T. R., and Zhuang, X., Short-range spectroscopic ruler based on a single-molecule optical switch., Physical Review Letters 94: 108101 (2005). | PRL ||
  • Battistutta, R., Negro, A., and Zanotti, G., Crystal structure and refolding properties of the mutant F99S/M153T/V163A of the green fluorescent protein., Proteins: Structure, Function, and Genetics 41: 429-437 (2000). | PubMed |
  • Beddoe, T., Ling, M., Dove, S., Hoegh-Guldberg, O., Devenish, R., Prescott, M., and Rossjohn, J., The production, purification and crystallization of a pocilloporin pigment from a reef-forming coral., Acta Crystallographica, Section D: Biological Crystallography 59: 597-599 (2003). | AC ||
  • Bell, A. F., He, X., Wachter, R. M., and Tonge, P. J., Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy., Biochemistry 39: 4423-4431 (2000). | PubMed |
  • Bell, A. F., Stoner-Ma, D., Wachter, R. M., and Tonge, P. J., Light-driven decarboxylation of wild-type green fluorescent protein., Journal of the American Chemical Society 125: 6919-6926 (2003). | PubMed |
  • Belmont, A. S., Visualizing chromosome dynamics with GFP., Trends in Cell Biology 11: 250-257 (2001). | PubMed |
  • Berridge, M. J., Lipp, P., and Bootman, M. D., The versatility and universality of calcium signaling., Nature Reviews Molecular Cell Biology 1: 11-21 (2000). | PubMed |
  • Bevis, B. J. and Glick, B. S., Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed)., Nature Biotechnology 20: 83-87 (2002). | PubMed |
  • Billinton, N. and Knight, A. W., Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence., Analytical Biochemistry 291: 175-197 (2001). | PubMed |
  • Biondi, R. M., Baehler, P. J., Reymond, C. D., and Véron, M., Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum., Nucleic Acids Research 26: 4946-4952 (1998). | PubMed |
  • Blab, G. A., Lommerse, P. H. M., Cognet, L., Harms, G. S., and Schmidt, T., Two-photon excitation action cross-sections of the autofluorescent proteins., Chemical Physics Letters 350: 71-77 (2001). | CPL ||
  • Bongaerts, J. M., Hautefort, I., Sidebotham, J. M., and Hinton, J. C. D., Green fluorescent protein as a marker for conditional gene expression in bacterial cells., Methods in Enzymology 358: 43-66 (2002). | PubMed |
  • Bonsma, S., Purchase, R., Jezowksi, S., Gallus, J., Könz, F., and Völker, S., Green and red fluorescent proteins: Photo- and thermally induced dynamics probed by site-selective spectroscopy and hole burning., ChemPhysChem 6: 838-849 (2005).| PubMed |
  • Bowen, B. and Woodbury, N., Single-molecule fluorescence lifetime and anisotropy measurements of the red fluorescent protein, DsRed, in solution., Photochemistry and Photobiology 77: 362-69 (2003). | PubMed |
  • Branchini, B. R., Nemser, A. R., and Zimmer, M., A computational analysis of the unique protein-induced tight turn that results in posttranslational chromophore formation in green fluorescent protein., Journal of the American Chemical Society 120: 1-6 (1998).| JACS ||
  • Brandizzi, F., Fricker, M., and Hawes, C., A greener world: The revolution in plant bioimaging., Nature Reviews Molecular and Cell Biology 3: 520-530 (2002). | PubMed |
  • Brejc, K., Sixma, T., Kitts, P. A., Kain, S. R., Tsien, R. Y., Ormo, M., and Remington, S. J., Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein., Proceedings of the National Academy of Sciences (USA) 94: 2306-2311 (1997). | PubMed |
  • Brooks, S., The discovery of aequorin and green fluorescent protein., Journal of Microscopy 217: 1-2 (2005). | PubMed |
  • Bublitz, G., King, B. A., and Boxer, S. G., Electronic structure of the chromophore in green fluorescent protein (GFP)., Journal of the American Chemical Society 120: 9370-9371 (1998). | JACS ||
  • Budisa, N., Pal, P. P., Alefelder, S., Birle, P., Krywcun, T., Rubini, M., Wenger, W., Bae, J. H., and Steiner, T., Probing the role of tryptophans in Aequorea victoria green fluorescent proteins with an expanded genetic code., Biological Chemistry 385: 191-202 (2004).| PubMed |
  • Bulina, M. E., Chudakov, D. M., Mudrik, N. N., and Lukyanov, K. A., Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis., BMC Biochemistry 3: 7 (2002). | PubMed |
  • Bulina, M. E., Lukyanov, K. A., Yampolsky, I. V., Chudakov, D. M., Staroverov, D. B., Shcheglov, A. S., Gurskaya, N. G., and Lukyanov, S., New class of blue animal pigments based on frizzled and kringle protein domains., Journal of Biological Chemistry 279: 43367-43370 (2004). | PubMed |
  • Bulina, M. E., Verkhusha, V. V., Staroverov, D. B., Chudakov, D. M., and Lukyanov, K. A., Hetero-oligomeric tagging diminishes non-specific aggregation of target proteins fused with Anthozoa fluorescent proteins., Biochemical Journal 371: 109-114 (2003).| PubMed |
  • Cabantous, S., Terwilliger, T. C., and Waldo, G. S., Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein., Nature Biotechnology 23: 102-107 (2005). | PubMed |
  • Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., and Tsien, R. Y., A monomeric red fluorescent protein., Proceedings of the National Academy of Sciences (USA) 99: 7877-7882 (2002). | PubMed |
  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C., Green fluorescent protein as a marker for gene expression., Science 263: 802-805 (1994). | PubMed |
  • Chamberlain, C. and Hahn, K. M., Watching proteins in the wild: Fluorescence methods to study protein dynamics in living cells., Traffic 1: 755-762 (2000). | PubMed |
  • Chattoraj, M., King, B. A., Bublitz, G. U., and Boxer, S. G., Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer., Proceedings of the National Academy of Sciences (USA) 93: 8362-8367 (1996). | PubMed |
  • Chen, Y., Mills, J. D., and Periasamy, A., Protein localization in living cells and tissues using FRET and FLIM., Differentiation 71: 528-541 (2003). | PubMed |
  • Cheng, L., Fu, J., Tsukamoto, A., and Hawley, R. G., Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells., Nature Biotechnology 14: 606-609 (1996). | PubMed |
  • Chudakov, D. M., Belousov, V. V., Zaraisky, A. G., Novoselov, V. V., Staroverov, D. B., Zorov, D. B., Lukyanov, S., and Lukyanov, K. A., Kindling fluorescent proteins for precise in vivo photolabeling., Nature Biotechnology 21: 191-194 (2003). | PubMed |
  • Chudakov, D. M., Feofanov, A. V., Mudrik, N. N., Lukyanov, S., and Lukyanov, K. A., Chromophore environment provides clues to "kindling fluorescent protein" riddle., Journal of Biological Chemistry., 278: 7215-7219 (2003). | PubMed |
  • Chudakov, D. M. and Lukyanov, K. A., Use of green fluorescent protein (GFP) and its homologs for in vivo protein motility studies., Biochemistry (Moscow) 68: 952-957 (2003). | PubMed | >
  • Chudakov, D. M., Verkhusha, V. V., Staroverov, D. B., Souslova, E. A., Lukyanov, S., and Lukyanov, K. A., Photoswitchable cyan fluorescent protein for protein tracking., Nature Biotechnology 22: 1435-1439 (2004). | PubMed |
  • Cinelli, R. A. G., Ferrari, A., Pellegrini, V., Signorelli, A., Tyagi, M., Giacca, M., and Beltram, F., Engineering single-molecule fluorescence dynamics for advanced biomolecular applications., Australian Journal of Chemistry 54: 107-111 (2001). | AJC ||
  • Cinelli, R. A. G., Pellegrini, V., Ferrari, A., Faraci, P., Nifosi, R., Tyagi, M., Giacca, M., and Beltram, F., Green fluorescent proteins as optically controllable elements in bioelectronics., Applied Physics Letters 79: 3353-3355 (2001). | APL ||
  • Cody, C. W., Prahser, D. C., Westler, W. M., Prendergast, F. G., and Ward, W. W., Chemical structure of the hexapeptide chromophore Aequorea green-fluorescent protein., Biochemistry 32: 1212-1218 (1993). | PubMed |
  • Cormack, B. P., Valdivia, R. H., and Falkow, S., FACS-optimized mutants of the green fluorescent protein (GFP)., Gene 173: 33-38 (1996). | PubMed |
  • Cotlet, M., Hofkens, J., Habuchi, S., Dirix, G., Van Guyse, M., Michiels, J., Vanderleyden, J., and De Schryver, F. C., Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy., Proceedings of the National Academy of Sciences (USA) 98: 14398-14403 (2001).| PubMed |
  • Cotlet, M., Hofkens, J., Köhn, F., Michiels, J., Dirix, G., Van Guyse, M., Vanderleyden, J., and De Schryver, F. C., Collective effects in individual oligomers of the red fluorescent coral protein DsRed., Chemical Physics Letters 336: 415-423 (2001). | CPL ||
  • Cotlet, M., Hofkens, J., Maus, M., Gensch, T., Van der Auweraer, M., Michiels, J., Dirix, G., Van Guyse, M., Vanderleyden, J., Visser, A. J. W. G., and De Scheyver, F. C., Excited-state dynamics in the enhanced green fluorescent protein mutant probed by picosecond time-resolved single photon counting spectroscopy., Journal of Physical Chemistry B 105: 4999-5006 (2001). | JPCB ||
  • Cox, G. and Salih, A., Fluorescence lifetime imaging of symbionts and fluorescent proteins in reef corals., Proceedings of the International Society for Optical Engineering (SPIE) 5700: 162-170 (2005). | SPIE ||
  • Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. C., Improved green fluorescent protein by molecular evolution using DNA shuffling., Nature Biotechnology 14: 315-319 (1996). | PubMed |
  • Creemers, T. M. H., Lock, A. J., Subramanium, V., Jovin, T. M., and Volker, S., Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning., Nature Structural Biology 6: 557-560 (1999). | PubMed |
  • Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y., Understanding, improving and using green fluorescent proteins., Trends in Biochemical Sciences 20: 448-455 (1995). | PubMed |
  • Dandekar, D. H., Kumar, M., Ladha, J. S., Ganesh, K. N., and Mitra, D., A quantitative method for normalization of transfection efficiency using enhanced green fluorescent protein., Analytical Biochemistry 342: 341-344 (2005). | PubMed |
  • Delagrave, S., Hawtin, R. E., Silva, C. M., Yang, M. M., and Youvan, D. C., Red-shifted excitation mutants of the green fluorescent protein., Nature Biotechnology 13: 151-154 (1995). | PubMed |
  • Demaurex, N. and Frieden, M., Measurements of the free luminal ER calcium concentration with targeted "chameleon" fluorescent proteins., Cell Calcium 34: 109-119 (2003). | PubMed |
  • Deryusheva, S. and Gall, J. G., Dynamics of coilin in Cajal bodies of the Xenopus germinal vesicle., Proceedings of the National Academy of Sciences (USA) 101: 4810-4814 (2004). | PubMed |
  • Dickson, R. M., Cubitt, A. B., Tsien, R. Y., and Moerner, W. E., On/off blinking and switching behavior of single molecules of green fluorescent protein., Nature 388: 355-358 (1997). | PubMed |
  • Dooley, C. T., Dore, T. M., Hanson, G. T., Jackson, W. C., Remington, S. J., and Tsien, R. Y., Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators., Journal of Biological Chemistry 279: 22284-22293 (2004). | PubMed |
  • Dopf, J. and Horiagon, T. M., Deletion mapping of the Aequorea victoria green fluorescent protein., Gene 173: 39-44 (1996). | PubMed |
  • Dove, S. G., Hoegh-Guldberg, O., and Ranganathan, S., Major colour patterns of reef-building corals are due to a family of GFP-like proteins., Coral Reefs 19: 197-204 (2001). | Coral Reefs ||
  • Dove, S. G., Takabayashi, M., and Hoegh-Guldberg, O., Isolation and partial characterization of the pink and blue pigments of Pocilloporid and Acroporid corals., Biological Bulletin 189: 288-297 (1995). | Biol Bull ||
  • Dundr, M., McNally, J. G., Cohen, J., and Misteli, T., Quantitation of GFP-fusion proteins in single living cells., Journal Structural Biology 140: 92-99 (2002a). | PubMed |
  • Ehrhardt, D., GFP technology for live cell imaging., Current Opinion in Plant Biology 6: 622-628 (2003). | PubMed |
  • Ehrig, T., O'Kane, D. J., and Prendergast, F. G., Green-fluorescent protein mutants with altered fluorescence excitation spectra., FEBS Letters 367: 163-166 (1995). | PubMed |
  • Eisenstein, M., A better way to pick a plum., Nature Methods 2: 87 (2005). | Nat Methods ||
  • Eisenstein, M., New fluorescent protein includes handy on-off switch., Nature Methods 2: 8-9 (2005). | Nat Methods ||
  • Ellenberg, J., Lippincott-Schwartz, J., and Presley, J. F., Dual-colour imaging with GFP variants., Trends in Cell Biology 9: 52-56 (1999). | PubMed |
  • Ellenberg, J., Lippincott-Schwartz, J., and Presley, J. F., Two-color green fluorescent protein time-lapse imaging., BioTechniques 25: 838-846 (1998). | PubMed |
  • Elowitz, M. B., Surette, M. G., Wolf, P.-E., Stock, J. B., and Leibler, S., Photoactivation turns green fluorescent protein red., Current Biology 7: 809-812 (1997). | PubMed |
  • Elowitz, M. B., Surette, M. G., Wolf, P.-E., Stock, J. B., and Leibler, S., Protein mobility in the cytoplasm of Escherichia coli., Journal of Bacteriology 181: 197-203 (1999). | PubMed |
  • Elsiger, M.-A., Wachter, R. M., Hanson, G. T., Kallio, K., and Remington, S. J., Structural and spectral response of green fluorescent protein variants to changes in pH., Biochemistry 38: 5296-5301 (1999). | PubMed |
  • Erickson, M. G., Alseikhan, B. A., Peterson, B. Z., and Yue, D. T., Preassociation of calmodulin with voltage-gated calcium channels revealed by FRET in single living cells., Neuron 31: 973-985 (2001). | PubMed |
  • Evanko, D., Highlighting protein movement in living cells., Nature Methods 1: 96-97 (2004). | Nat Methods ||
  • Fehr, M., Okumoto, S., Deuschle, K., Lager, I., Looger, L. L., Persson, J., Kozhuhk, L., Lalonde, S., and Frommer, W. B., Development and use of fluorescent nanosensors for metabolite imaging in living cells., Biochemical Society Transactions 33: 287-290 (2005). | PubMed |
  • Fiala, A., Spall, T., Diegelmann, S., Eisermann, B., Sachse, S., Devaud, J.-M., Buchner, E., and Galizia, C. G., Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons., Current Biology 12: 1877-1884 (2002). | PubMed |
  • Filippin, L., Abad, M. F. C., Gastaldello, S., Magalhães, P. J., Sandonà, D., and Pozzan, T., Improved strategies for the delivery of GFP-based calcium sensors into the mitochondrial matrix., Cell Calcium 37: 129-136 (2005). | PubMed |
  • Finley, K. R., Davidson, A. E., and Ekker, S. C., Three-color imaging using fluorescent proteins in living Zebrafish embryos., BioTechniques 31: 66-72 (2001). | PubMed |
  • Fischer, A. J., Coleman, W. J., Yang, M. M., and Lagarias, J. C., Engineering phytochromes: Biliproteins that switch and glow., Proceedings of the International Society for Optical Engineering (SPIE) 5329: 33-43 (2004). | SPIE ||
  • Fischer, M., Haase, I., Simmeth, E., Gerisch, G., and Müller-Taubenberger, A., A brilliant monomeric red fluorescent protein to visualize cytoskeleton dynamics in Dictyostelium., FEBS Letters 577: 227-232 (2004). | PubMed |
  • Follenius-Wund, A., Bourotte, M., Schmitt, M., Lyice, F., Lami, H., Bourguignon, J.-J., and Pigault, C., Fluorescent derivatives of the GFP chromophore give a new insight into the GFP fluorescence process., Biophysical Journal 85: 1839-1850 (2003). | PubMed |
  • Fradkov, A. F., Chen, Y., Ding, L., Barsova, E. V., Matz, M. V., and Lukyanov, S. A., Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence., FEBS Letters 479: 127-130 (2000). | PubMed |
  • Fradkov, A. F., Verkhusha, V. V., Staroverov, D. B., Bulina, M. E., Yanushevich, Y. G., Martynov, V. I., Lukyanov, S., and Lukyanov, K. A., Far-red fluorescent tag for protein labelling., Biochemical Journal 368: 17-21 (2002). | PubMed |
  • Gaietta, G., Deerinck, T. J., Adams, S. R., Bouwer, J., Tour, O., Laird, D. W., Sosinsky, G. E., Tsien, R. Y., and Ellisman, M. H., Multicolor and electron microscopic imaging of connexin trafficking., Science 296: 503-507 (2002). | PubMed |
  • Garcia-Parajo, M. F., Koopman, M., van Dijk, E. M. H. P., Subramaniam, V., and van Hulst, N. F., The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection., Proceedings of the National Academy of Sciences (USA) 98: 14392-14397 (2001). | PubMed |
  • Gavin, P., Devenish, R. J., and Prescott, M., An approach for reducing unwanted oligomerisation of DsRed fusion proteins., Biochemical and Biophysical Research Communications 298: 707-713 (2002). | PubMed |
  • Genove, G., Glick, B. S., and Barth, A. L., Brighter reporter genes from multimerized fluorescent proteins., BioTechniques 39: 814-822 (2005). | BioTechniques ||
  • Gerdes, H.-H. and Kaether, C., Green fluorescent protein: Applications in cell biology., FEBS Letters 389: 44-47 (1996). | PubMed |
  • Ghosh, I., Hamilton, A., and Regan, L., Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein., Journal of the American Chemical Society 122: 5658-5659 (2000). | JACS ||
  • Gilmore, A. M., Larkum, A. W. D., Salih, A., Itoh, S., Shibata, Y., Bena, C., Yamasaki, H., Papina, M., and Van Woesik, R., Simultaneous time resolution of the emission spectra of fluorescent proteins and zooanthellar chlorophyll in reef-building corals., Photochemistry and Photobiology 77: 515-523 (2003). | PubMed |
  • Giuliano, K. A., Post, P. L., Hahn, K. M., and Taylor, D. L., Fluorescent protein biosensors: Measurement of molecular dynamics in living cells., Annual Review of Biophysics and Biomolecular Structure 24: 405-434 (1995). | PubMed |
  • Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., and Tsien, R. Y., Reducing the environmental sensitivity of yellow fluorescent protein., Journal of Biological Chemistry 276: 29188-29194 (2001). | PubMed |
  • Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K., and Tsien, R. Y., The structure of the chromophore within DsRed, a red fluorescent protein from coral., Proceedings of the National Academy of Sciences (USA) 97: 11990-11995 (2000). | PubMed |
  • Guerrero, G., Siegel, M. S., Roska, B., Loots, E., and Isacoff, E. Y., Tuning FlaSh: Redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential., Biophysical Journal 83: 3607-3618 (2002). | PubMed |
  • Guo, B., Pearce, A. G., Traulsen, K. E. A., Rintala, A. C., and Lee, H., Fluorescence produced by transfection reagents can be confused with green fluorescent proteins in mammalian cells., BioTechniques 31: 314-321 (2001). | PubMed |
  • Gurskaya, N. G., Fradkov, A. F., Pounkova, N. I., Staroverov, D. B., Bulina, M. E., Yanushevich, Y. G., Labas, Y. A., Lukyanov, S., and Lukyanov, K. A., A colourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants., Biochemical Journal 373: 403-408 (2003). | PubMed |
  • Gurskaya, N. G., Fradkov, A. F., Terskikh, A., Matz. M. V., Labas, Y. A., Martynov, V. I., Yanushevich, Y. G., Lukyanov, K. A., and Lukyanov, S. A., GFP-like chromoproteins as a source of far-red fluorescent proteins., FEBS Letters 507: 16-20 (2001). | PubMed |
  • Gurskaya, N. G., Savitsky, A. P., Yanushevich, Y. G., Lukyanov, S. A., and Lukyanov, K. A., Color transitions in coral's fluorescent proteins by site-directed mutagenesis., BMC Biochemistry 2: 6 (2001). | PubMed |
  • Haas, J., Park, E.-C., and Seed, B., Codon usage limitation in the expression of HIV-1 envelope glycoprotein., Current Biology 6: 315-324 (1996). | PubMed |
  • Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A., and Hofkens, J., Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa., Proceedings of the National Academy of Sciences (USA) 102: 9511-9516 (2005).| PubMed |
  • Habuchi, S., Cotlet, M., Gensch, T., Bednarz, T., Haber-Pohlmeier, S., Rozenski, J., Dirix, G., Michiels. J., Vanderleyden, J., Heberle, J., De Schryver, F. C., and Hofkens, J., Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed., Journal of the American Chemical Society 127: 8977-8984 (2005).| PubMed |
  • Haddock, S. H. D., Dunn, C. W., Pugh, P. R., and Schnitzler, C. E., Bioluminescent and red-fluorescent lures in a deep-sea siphonophore., Science 309: 263 (2005). | PubMed |
  • Hadjantonakis, A., Dickinson, M. E., Fraser, S. E., and Papaioannou, V. E., Technicolour transgenics: Imaging tools for functional genomics in the mouse., Nature Reviews Genetics 4: 613-625 (2003). | PubMed |
  • Han, W., Li, D., and Levitan, E. S., A new green fluorescent protein construct for localizing and quantifying peptide release., Annals New York Academy of Sciences 971: 627-633 (2002). | PubMed |
  • Hanson, G. T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldis, R. A., Tsien, R. Y., and Remington, S. J., Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators., Journal of Biological Chemistry 279: 13044-13053 (2004). | PubMed |
  • Hanson, G. T., McAnaney, T. B., Park, E. S., Rendell, M. E. P., Yarbrough, D. K., Chu, S., Xi, L., Boxer, S. G., Montrose, M. H., and Remington, S. J., Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application., Biochemistry 41: 15477-15488 (2002). | PubMed |
  • Harms, G. S., Cognet, L., Lommerse, P. H. M., Blab, G. A., and Schmidt, T., Autofluorescent proteins in single-molecule research: Applications to live cell imaging microscopy., Biophysical Journal 80: 2396-2408 (2001). | PubMed |
  • Hasan, M. T., Friedrich, R. W., Euler, T., Larkum, M. E., Giese, G., Both, M., Duebel, J., Waters, J., Bujard, H., Griesbeck, O., Tsien, R. Y., Nagai, T., Miyawaki, A., and Denk, W., Functional fluorescent calcium indicator proteins in transgenic mice under TET control., PLoS Biology 2: 0763-0775 (2004). | PubMed |
  • Hastings, J. W., Chemistries and colors of bioluminescent reactions: A review., Gene 173: 5-11 (1996). | PubMed |
  • Haupts, U., Maiti, S., Schwille, P., and Webb, W. W., Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy., Proceedings of the National Academy of Sciences (USA) 95: 13573-13578 (1998).| PubMed |
  • He, X., Bell, A. F., and Tonge, P. J., Isotope labeling and normal-mode analysis of a model green fluorescent protein chromophore., Journal of Physical Chemistry B 106: 6056-6066 (2002). | JPCB ||
  • He, X., Bell, A. F., and Tonge, P. J., Synthesis and spectroscopic studies of model red fluorescent protein chromophores., Organic Letters 4: 1523-1526 (2002). | PubMed |
  • Heikal, A. A., Hess, S. T., Baird, G. S., Tsien, R. Y., and Webb, W. W., Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: Coral red (DsRed) and yellow (Citrine)., Proceedings of the National Academy of Sciences (USA) 97: 11996-12001 (2000). | PubMed |
  • Heikal, A. A., Hess, S. T., and Webb, W. W., Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): Acid-base specificity., Chemical Physics 274: 37-55 (2001). | Chem Phys |
  • Heim, N. and Griesbeck, O., Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein., Journal of Biological Chemistry 279: 14280-14286 (2004). | PubMed |
  • Heim, R., Cubitt, A. B., and Tsien, R. Y., Improved green fluorescence., Nature 373: 663-664 (1995). | PubMed |
  • Heim, R., Prasher, D. C., and Tsien, R. Y., Wavelength mutations and posttranslational autoxidation of green fluorescent protein., Proceedings of the National Academy of Sciences (USA) 91: 12501-12504 (1994). | PubMed |
  • Heim, R. and Tsien, R. Y., Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer., Current Biology 6: 178-182 (1996). | PubMed |
  • Heinemann, U. and Hahn, M., Circular permutation of polypeptide chains: Implications for protein folding and stability., Progress in Biophysics and Molecular Biology. 64: 121-143 (1995). | PubMed |
  • Hell, S. W., Strategy for far-field optical imaging and writing without diffraction limit., Physics Letters A 326: 140-145 (2004). | PLA ||
  • Helms, V., Winstead, C., and Langhoff, P.W., Low-lying electronic excitations of the green fluorescent protein chromophore., Journal of Molecular Structure (Theochem) 506: 179-89 (2000). | Theochem ||
  • Henderson, J.N. and Remington, S.J., Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano., Proceedings of the National Academy of Sciences 102: 12712-17 (2005). | PubMed |
  • Hess, S. T., Sheets, E. D., Wagenknecht-Wiesner, A., and Heikal, A. A., Quantitative analysis of the fluorescence properties of intrinsically fluorescent proteins in living cells., Biophysical Journal 85: 2566-2580 (2003). | PubMed |
  • Hoffmann, C., Gaietta, G., Bünemann, M., Adams, S. R., Oberdorff-Maass, S., Behr, B., Vilardaga, J.-P., Tsien, R. Y., and Ellisman, M. H., and Lohse, M. J., A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells., Nature Methods 2: 171-176 (2005). | PubMed |
  • Honda, A., Adams, S. R., Sawyer, C. L., Lev-Ram, V., Tsien, R. Y., and Dostmann, W. R. G., Spatiotemporal dynamics of guanosine 3',5'-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator., Proceedings of the National Academy of Sciences (USA) 98: 2437-2442 (2001). | PubMed |
  • Hopf, M., Göhring, W., Ries, A., Timpl, R., and Hohenester, E., Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1., Nature Structural Biology 8: 634-640 (2001). | PubMed |
  • Hu, C.-D., Chinenov, Y., and Kerppola, T. K., Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation., Molecular Cell 9: 789-798 (2002). | PubMed |
  • Ikeda, M., Sugiyama, T., Wallace, C. S., Gompf, H. S., Yoshioka, T., Miyawaki, A., and Allen, C. N., Circadian dynamics of cytosolic and nuclear calcium in single suprachiasmatic nucleus neurons., Neuron 38: 253-263 (2003). | PubMed |
  • Inouye, S. and Tsuji, F. I., Aequorea green fluorescent protein: Expression of the gene and fluorescence characteristics of the recombinant protein., FEBS Letters 341: 277-280 (1994). | PubMed |
  • Inouye, S. and Tsuji, F. I., Evidence for redox forms of the Aequorea green fluorescent protein., FEBS Letters 351: 211-214 (1994). | PubMed |
  • Ip, D. T., Chan, S. H., Allen, M. D., Bycroft, M., Wan, D. C., and Wong, K. B., Crystallization and preliminary crystallographic analysis of a novel orange fluorescent protein from the Cnidaria tube anemone Cerianthus sp.., Acta Crystallographica, Section D: Biological Crystallography 60: 340-341 (2004). | AC ||
  • Irie, M., Diarylethenes for memories and switches., Chemical Reviews 100: 1685-1716 (2000). | PubMed |
  • Irie, M., Photochromism: Memories and Switches-Introduction., Chemical Reviews 100: 1683-1684 (2000). | PubMed |
  • Irie, M., Fukaminato, T., Sasaki, T., Tamai, N., and Kawai, T., A digital fluorescent molecular photoswitch., Nature 420: 759-760 (2002). | PubMed |
  • Izquierdo, M. A., Bell, T. D. M., Habuchi, S., Fron, E., Pilot, R., Vosch, T., De Feyter, S., Verhoeven, J., Jacob, J., Mullen, K., Hofkens, J., and De Schryver, F. C., Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states., Chemical Physics Letters 401: 503-508 (2005). | CPL ||
  • Jain, R. K. and Ranganathan, R., Local complexity of amino acid interactions in a protein core., Proceedings of the National Academy of Sciences (USA) 101: 111-116 (2004).| PubMed |
  • Jakobs, S., Schauss, A. C., and Hell, S. W., Photoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen., FEBS Letters 554: 194-200 (2003). | PubMed |
  • Jakobs, S., Subramaniam, V., Schönle, A., Jovin, T. M., and Hell, S. W., EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy., FEBS Letters 479: 131-135 (2000). | PubMed |
  • Jayaraman, S., Haggie, P., Wachter, R. M., Remington, S. J., and Verkman, A. S., Mechanism and cellular applications of a green fluorescent protein-based halide sensor., Journal of Biological Chemistry 275: 6047-6050 (2000). | PubMed |
  • Jung, G., Wiehler, J., and Zumbusch, A., The photophysics of green fluorescent protein: Influence of the key amino acids at positions 65, 203, and 222., Biophysical Journal 88: 1932-1947 (2005). | PubMed |
  • Kaether, C. and Gerdes, H.-H., Visualization of protein transport along the secretory pathway using green fluorescent protein., FEBS Letters 369: 267-271 (1995). | PubMed |
  • Kam, Z., Zamir, E., and Geiger, B., Probing molecular processes in live cells by quantitative multidimensional microscopy., Trends in Cell Biology 11: 329-334 (2001).| PubMed |
  • Karasawa, S., Araki, T., Nagai, T., Mizuno, H., and Miyawaki, A., Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer., Biochemical Journal 381: 307-312 (2004). | PubMed |
  • Karasawa, S., Araki, T., Yamamoto-Hino, M., and Miyawaki, A., A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling., Journal of Biological Chemistry 278: 34167-34171 (2003). | PubMed |
  • Karbowski, M., Arnoult, D., Chen, H., Chan, D. C., Smith, C. L., and Youle, R. J., Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis., Journal of Cell Biology 164: 493-499 (2004). | PubMed |
  • Kelmanson, I. V. and Matz, M. V., Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida)., Molecular Biology and Evolution 20: 1125-1133 (2003). | PubMed |
  • Kendall, J. M. and Badminton, M. N., Aequorea victoria bioluminescence moves into an exciting new era., Trends in Biotechnology 16: 216-224 (1998). | PubMed |
  • Kennis, J. T. M., Larsen, D. S., van Stokkum, I. H. M., Vengris, M., van Thor, J. J., and van Grondelle, R., Uncovering the hidden ground state of green fluorescent protein., Proceedings of the National Academy of Sciences (USA) 101: 17988-17993 (2004).| PubMed |
  • Kerr, R., Lev-Ram, V., Baird, G., Vincent, P., Tsien, R. Y., and Schafer, W. R., Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans., Neuron 26: 583-594 (2000). | PubMed |
  • Kimata, Y., Iwaki, M., Lim, C. R., and Kohno, K., A novel mutation which enhances the fluorescence of green fluorescent protein at high temperatures., Biochemical and Biophysical Research Communications 232: 69-73 (1997). | PubMed |
  • Kneen, M., Farinas, J., Li, Y., and Verkman, A. S., Green fluorescent protein as a noninvasive intracellular pH indicator., Biophysical Journal 74: 1591-1599 (1998).| PubMed |
  • Knop, M., Barr, F., Riedel, C. G., Heckel, T., and Reichel, C., Improved version of the red fluorescent protein (drFP583/DsRed/RFP)., BioTechniques 33: 592-602 (2002).| PubMed |
  • Kostov, Y., Smith, D. S., Tolosa, L., Rao, G., Gryczynski, I., Gryczynsky, Z., Malicka, J., Lakowicz, J., Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer., Biotechnology Progress 21: 1731-1735 (2005).| Biotechnol Prog ||
  • Kuner, T. and Augustine, G. J., A genetically encoded ratiometric indicator for chloride: Capturing chloride transients in cultured hippocampal neurons., Neuron 27: 447-459 (2000). | PubMed |
  • Labas, Y. A., Gurskaya, N. G., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Lukyanov, S. A., and Matz, M. V., Diversity and evolution of the green fluorescent protein family., Proceedings of the National Academy of Sciences (USA) 99: 4256-4261 (2002). | PubMed |
  • Lauf, U., Lopez, P., and Falk, M. M., Expression of fluorescently tagged connexins: A novel approach to rescue function of oligomeric DsRed-tagged proteins., FEBS Letters 498: 11-15 (2001). | PubMed |
  • Li, X., Zhao, X., Fang, Y., Duong, T., Fan. C., Huang, C.-C., and Kain, S. R., Generation of destabilized green fluorescent protein as a transcription reporter., Journal of Biological Chemistry 273: 34970-34975 (1998). | PubMed |
  • Liang, Y. C., Dvornikov, A. S., and Rentzepis, P. M., Nonvolatile read-out molecular memory., Proceedings of the National Academy of Sciences (USA) 100: 8109-8112 (2003). | PubMed |
  • Lim, C. R., Kimata, Y., Oka, M., Nomaguchi, K., and Kohno, K., Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin NSP1., Journal of Biochemistry 118: 13-17 (1995). | PubMed |
  • Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G. H., Photobleaching and photoactivation: Following protein dynamics in living cells., Nature Cell Biology 5: S7-S14 (2003). | PubMed |
  • Lippincott-Schwartz, J. and Patterson, G. H., Development and use of fluorescent protein markers in living cells., Science 300: 87-91 (2003). | PubMed |
  • Liu, H. S., Jan, M. S., Chou, C. K., Chen, P. H., and Ke, N. J., Is green fluorescent protein toxic to the living cells?., Biochemical and Biophysical Research Communications 260: 712-717 (1999). | PubMed |
  • Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G., and Tsien, R. Y., Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins., Proceedings of the National Academy of Sciences (USA) 95: 6803-6808 (1998).| PubMed |
  • Lossau, H., Kummer, A., Heinecke, R., Pöllinger-Dammer, F., Kompa, C., Bieser, G., Jonsson, T., Silva, C. M., Yang, M. M., Youvan, D. C., and Michel-Beyerle, M. E., Time-resolved spectroscopy of wild-type and mutant green fluorescent proteins reveals excited state deprotonation consistent with fluorophore-protein interactions., Chemical Physics 213: 1-16 (1996). | Chem Phys ||
  • Lounis, B., Deich, J., Rosell, F. I., Boxer, S. G., and Moerner, W. E., Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level., Journal of Physical Chemistry B 105: 5048-5054 (2001). | JPCB ||
  • Lukyanov, K. A., Fradkov, A. F., Gurskaya, N. G., Matz, M. V., Labas, Y. A., Savitsky, A. P., Markelov, M. L., Zaraisky, A. G., Zhao, X., Fang, Y., Tan, W., and Lukyanov, S. A., Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog., Journal of Biological Chemistry 275: 25879-25882 (2000). | PubMed |
  • Mahajan, N. P., Harrison-Shostak, D. C., Michaux, J., and Herman, B., Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis., Chemistry and Biology 6: 401-409 (1999). | PubMed |
  • Makino, Y., Amada, K., Taguchi, H., and Yoshida, M., Chaperonin-mediated folding of green fluorescent protein., Journal of Biological Chemistry 272: 12468-12474 (1997).| PubMed |
  • Malvezzi-Campeggi, F., Jahnz, M., Heinze, K. G., Dittrich, P., and Schwille, P., Light-induced flickering of DsRed provides evidence for distinct and interconvertible fluorescent states., Biophysical Journal 81: 1776-1785 (2001). | PubMed |
  • March, J. C., Rao, G., and Bentley, W. E., Biotechnological applications of green fluorescent protein., Applied Microbiology and Biotechnology 62: 303-315 (2003).| PubMed |
  • Marchant, J. S., Stutzmann, G. E., Leissring, M. A., LaFerla, F. M., and Parker, I., Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling., Nature Biotechnology 19: 645-649 (2001). | PubMed |
  • Marques, M., López, X., Varsano, D., and Rubio, A., Time-dependent density-functional approach for biological chromophores: The case of the green fluorescent protein., Physical Review Letters 90: 258101 (2003). | PRL ||
  • Martin, M. E., Negri, F., and Olivucci, M., Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution., Journal of the American Chemical Society 126: 5452-64 (2004). | PubMed |
  • Martynov, V. I., Maksimov, B. I., Martynova, N. Y., Pakhomov, A. A., Gurskaya, N. G., and Lukyanov, S. A., A purple-blue chromoprotein from Goniopora tenuidens belongs to the DsRed subfamily of GFP-like proteins., Journal of Biological Chemistry 278: 46288-46292 (2003). | PubMed |
  • Martynov, V. I., Savitsky, A. P., Martynova, N. Y., Savitsky, P. A., Lukyanov, K. A., and Lukyanov, S. A., Alternative cyclization in GFP-like proteins family: The formation and structure of the chromophore of a purple chromoprotein from Anemonia sulcata., Journal of Biological Chemistry 276: 21012-21016 (2001). | PubMed |
  • Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., and Lukyanov, S. A., Fluorescent proteins from nonbioluminescent Anthozoa species., Nature Biotechnology 17: 969-973 (1999). | PubMed |
  • Matz, M. V., Lukyanov, K. A., and Lukyanov, S. A., Family of the green fluorescent protein: Journey to the end of the rainbow., BioEssays 24: 953-959 (2002). | PubMed |
  • Mazel, C. H. and Fuchs, E., Contribution of fluorescence to the spectral signature and perceived color of corals., Limnology and Oceanography 48: 390-401 (2003).| Limnol Oceanogr ||
  • Mazel, C. H., Lesser, M. P., Gorbunov, M. Y., Barry, T. M., Farrell, J. H., Wyman, K. D., and Falkowski, P. G., Green-fluorescent proteins in Caribbean corals., Limnology and Oceanography 48: 402-411 (2003). | Limnol Oceanogr ||
  • McAnaney, T. B., Park, E. S., Hanson, G. T., Remington, S. J., and Boxer, S. G., Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics., Biochemistry 41: 15489-15494 (2002). | PubMed |
  • McAnaney, T. B., Shi, X., Abbyad, P., Jung, H., Remington, S. J., and Boxer, S. G., Green fluorescent protein variants as ratiometric dual emission pH sensors. 3. Temperature dependence of proton transfer., Biochemistry 44: 8701-8711 (2005). | PubMed |
  • McAnaney, T. B., Zeng, W., Doe, C. F. E., Bhanji, N., Wakelin, S., Pearson, D. S., Abbyad, P., Shi, X., Boxer, S. G., and Bagshaw, C. R., Protonation, photobleaching, and photoactivation of yellow fluorescent proteins (YFP 10C): A unifying mechanism., Biochemistry 44: 5510-5524 (2005). | PubMed |
  • McCapra, F., Razavi, Z., and Neary, A. P., The fluorescence of the chromophore of the green fluorescent protein of Aequorea and Renilla., Journal of the Chemical Society, Chemical Communications 12: 790-791 (1988). | JCS ||
  • Metzger, F., Repunte-Canonigo, V., Matsushita, S., Akemann, W., Diez-Garcia, J., Ho, C. S., Iwasato, T., Grandes, P., Itohara, S., Joho, R. H., and Knöpfel, T., Transgenic mice expressing a pH and Cl- sensing yellow-fluorescent protein under the control of a potassium channel promoter., European Journal of Neuroscience 15: 40-50 (2002).| PubMed |
  • Miesenböck, G., De Angelis, D. A., and Rothman, J. E., Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins., Nature 394: 192-195 (1998). | PubMed |
  • Minta, A., Kao, J. P. Y., and Tsien, R. Y., Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores., Journal of Biological Chemistry 264: 8171-8178 (1989). | PubMed |
  • Mirabella, R., Franken, C., van der Krogt, G. N. M., Bisseling, T., and Geurts, R., Use of the fluorescent timer DsRed-E5 as reporter to monitor dynamics of gene activity in plants., Plant Physiology 135: 1879-1887 (2004). | PubMed |
  • Misteli, T. and Spector, D. L., Applications of the green fluorescent protein in cell biology and biotechnology., Nature Biotechnology 15: 961-963 (1997). | PubMed |
  • Mitchison, T. J., Polewards microtubule flux in the mitotic spindle: Evidence from photoactivation of fluorescence., Journal of Cell Biology 109: 637-652 (1989).| PubMed |
  • Miyawaki, A., Fluorescence imaging of physiological activity in complex systems using GFP-based probes., Current Opinion in Neurobiology 13: 591-596 (2003). | PubMed |
  • Miyawaki, A., Fluorescent proteins in a new light., Nature Biotechnology 22: 1374-1376 (2004). | PubMed |
  • Miyawaki, A., Green fluorescent protein-like proteins in reef Anthozoa animals., Cell Structure and Function 27: 343-347 (2002). | PubMed |
  • Miyawaki, A., Visualization of the spatial and temporal dynamics of intercellular signaling., Developmental Cell 4: 295-305 (2003). | PubMed |
  • Miyawaki, A., Griesbeck, O., Heim, R., and Tsien, R. Y., Dynamic and quantitative calcium measurements using improved cameleons., Proceedings of the National Academy of Sciences (USA) 96: 2135-2140 (1999). | PubMed |
  • Miyawaki, A., Llopis, J., Heim R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y., Fluorescent indicators for calcium based on green fluorescent proteins and calmodulin., Nature 388: 882-887 (1997). | PubMed |
  • Miyawaki, A., Nagai, T., and Mizuno, H., Mechanisms of protein fluorophore formation and engineering., Current Opinion in Chemical Biology 7: 557-562 (2003). | PubMed |
  • Miyawaki, A., Sawano, A., and Kogure, T., Lighting up cells: Labelling proteins with fluorophores., Nature Cell Biology 5: S1-S7 (2003). | PubMed |
  • Miyawaki, A. and Tsien, R. Y., Monitoring protein conformations and interactions by fluorescent resonance energy transfer between mutants of green fluorescent protein., Methods in Enzymology 327: 472-500 (2000). | PubMed |
  • Miyawaki, A., Nagai, T., and Mizuno, H., Engineering fluorescent proteins., Advances in Biochemical Engineering/Biotechnology 95: 1-15 (2005). | PubMed |
  • Mizuno, H., Mal, T. K., Tong, K. I., Ando, R., Furuta, T., Ikura, M., and Miyawaki, A., Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein., Molecular Cell 12: 1051-1058 (2003). | PubMed |
  • Mizuno, H., Sawano, A., Eli, P., Hama, H., and Miyawaki, A., Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer., Biochemistry 40: 2502-2510 (2001). | PubMed |
  • Moerner, W. E., Single-molecule optical spectroscopy of autofluorescent proteins., Journal of Chemical Physics 117: 10925-10937 (2002). | JCP ||
  • Morin, J. G. and Hastings, J. W., Energy transfer in a bioluminescent system., Journal of Cellular Physiology 77: 313-318 (1971). | PubMed |
  • Morise, H., Shimomura, O., Johnson, F. H., and Winant, J., Intermolecular energy transfer in the bioluminescent system of Aequorea., Biochemistry 13: 2656-2662 (1974).| PubMed |
  • Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., and Miyawaki, A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications., Nature Biotechnology 20: 87-90 (2002). | PubMed |
  • Nagai, T., Sawano, A., Park, E. S., and Miyawaki, A., Circularly permuted green fluorescent proteins engineered to sense calcium., Proceedings of the National Academy of Sciences (USA) 98: 3197-3202 (2001). | PubMed |
  • Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., and Miyawaki, A., Expanded dynamic range of fluorescent indicators for calcium by circularly permuted yellow fluorescent proteins., Proceedings of the National Academy of Sciences (USA) 101: 10554-10559 (2004). | PubMed |
  • Nagai, Y., Miyazaki, M., Aoki, R., Zama, T., Inouye, S., Hirose, K., Iino, M., and Hagiwara, M., A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo., Nature Biotechnology 18: 313-316 (2000). | PubMed |
  • Nakai, J., Ohkura, M., and Imoto, K., A high signal-to-noise calcium probe composed of a single green fluorescent protein., Nature Biotechnology 19: 137-141 (2001). | PubMed |
  • Nienhaus, K., Nienhaus, G. U., Wiedenmann, J., and Nar, H., Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP., Proceedings of the National Academy of Sciences (USA) 102: 9156-9159 (2005).| PubMed |
  • Nienhaus, K., Vallone, B., Renzi, F., Wiedenmann, J., and Nienhaus, G. U., Crystallization and preliminary X-ray diffraction analysis of the red fluorescent protein eqFP611., Acta Crystallographica Section D: Biological Crystallography 59: 1253-1255 (2003). | PubMed |
  • Nifosi, R., Ferrari, A., Arcangeli, C., Tozzini, V., Pellegrini, V., and Beltram, F., Photoreversible dark state in a tri-stable green fluorescent protein variant., Journal of Physical Chemistry B 107: 1679-84 (2003). | JPCB ||
  • Niwa, H., Inouye, S., Hirano, T., Matsuno, T., Kojima, S., Kubota, M., Ohashi, M., and Tsuji, F. I., Chemical nature of the light emitter of the Aequorea green fluorescent protein., Proceedings of the National Academy of Sciences (USA) 93: 13617-13622 (1996).| PubMed |
  • Okita, C., Sato, M., and Schroeder, T., Generation of optimized yellow and red fluorescent proteins with distinct subcellular localization., BioTechniques 36: 418-424 (2004). | PubMed |
  • Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J., Crystal structure of the Aequorea victoria green fluorescent protein., Science 273: 1392-1395 (1996). | PubMed |
  • Østergaard, H., Henriksen, A., Hansen, F. G., and Winther, J. R., Shedding light on disulfide bond formation: Engineering a redox switch in green fluorescent protein., EMBO Journal 20: 5853-5862 (2001). | PubMed |
  • Pakhomov, A. A., Martynova, N. Y., Gurskaya, N. G., Balashova, T. A., and Martynov, V. I., Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.., Biochemistry (Moscow) 69: 901-908 (2004). | PubMed |
  • Palm, G. J., Zdanov, A., Gaitanaris, G. A., Stauber, R., Pavlakis, G. N., and Wlodawer, A., The structural basis for spectral variations in green fluorescent protein., Nature Structural Biology 4: 361-365 (1997). | PubMed |
  • Palmer, A. E., Jin, C., Reed, J. C., and Tsien, R. Y., Bcl-2-mediated alterations in endoplasmic reticulum calcium analyzed with an improved genetically encoded fluorescent sensor., Proceedings of the National Academy of Sciences (USA) 101: 17404-17409 (2004). | PubMed |
  • Paramban, R. I., Bugos, R. C., and Su, W. W., Engineering green fluorescent protein as a dual functional tag., Biotechnology and Bioengineering 86: 687-97 (2004). | PubMed |
  • Patnaik, S., Trohalaki, S., Pachter, R., Molecular modeling of green fluorescent protein: Structural effects of chromophore deprotonation., Biopolymers 75: 441-452 (2004).| Biopolymers ||
  • Patterson, G. H., A new harvest of fluorescent proteins., Nature Biotechnology 22: 1524-1525 (2004). | PubMed |
  • Patterson, G. H., Day, R. N., and Piston, D. W., Fluorescent protein spectra., Journal of Cell Science 114: 837-838 (2001). | PubMed |
  • Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., and Piston, D. W., Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy., Biophysical Journal 73: 2782-2790 (1997). | PubMed |
  • Patterson, G. H. and Lippincott-Schwartz, J., A photoactivatable GFP for selective photolabeling of proteins and cells., Science 297: 1873-1877 (2002). | PubMed |
  • Patterson, G. H. and Lippincott-Schwartz, J., Development of a photoactivatable fluorescent protein from Aequorea victoria GFP., Proceedings of the International Society for Optical Engineering (SPIE) 5329: 13-22 (2004). | SPIE ||
  • Patterson, G. H. and Lippincott-Schwartz, J., Selective photolabeling of proteins using photoactivatable GFP., Methods 32: 445-450 (2004). | PubMed |
  • Patterson, G. H. and Piston, D. W., Photobleaching in Two-Photon Excitation Microscopy., Biophysical Journal 78: 2159-2162 (2000). | PubMed |
  • Pearce, L. L., Gandley, R. E., Han, W., Wasserloos, K., Stitt, M., Kanai, A. J., McLaughlin, M. K., Pitt, B. R., and Levitan, E. S., Role of metallothioein in nitric oxide signaling as revealed by a green fluorescent fusion protein., Proceedings of the National Academy of Sciences (USA) 97: 477-482 (2000). | PubMed |
  • Peele, B., Gururaja, T. L., Payan, D. G., and Anderson, D. C., Characterization and use of green fluorescent proteins from Renilla mulleri and Ptilosarcus guernyi for the human cell display of functional peptides., Journal of Protein Chemistry 20: 507-519 (2001).| PubMed |
  • Perozzo, M. A., Ward, K. B., Thompson, R. B., and Ward, W. W., X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals., Journal of Biological Chemistry 263: 7713-7716 (1988). | PubMed |
  • Persechini, A., Lynch, J. A., and Romoser, V. A., Novel fluorescent indicator proteins for monitoring free intracellular calcium., Cell Calcium 22: 209-216 (1997). | PubMed |
  • Petersen, J., Wilmann, P. G., Beddoe, T., Oakley, A. J., Devenish, R. J., Prescott, M., and Rossjohn, J., The 2.0 Angstrom crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor., Journal of Biological Chemistry 278: 44626-44631 (2003). | PubMed |
  • Phillips, G. N. Jr., Structure and dynamics of green fluorescent protein., Current Opinion in Structural Biology 7: 821-827 (1997). | PubMed |
  • Pierce, D. W., Hom-Booher, N., and Vale, R. D., Imaging individual green fluorescent proteins., Nature 388: 338 (1997). | PubMed |
  • Politz, J. C., Use of caged fluorochromes to track macromolecular movement in living cells., Trends in Cell Biology 9: 284-287 (1999). | PubMed |
  • Post, J. N., Lidke, K. A., Rieger, B., and Anrndt-Jovin, D. J., One- and two-photon photoactivation of a pa-GFP fusion protein in live Drosophila embryos., FEBS Letters 579: 325-330 (2005). | PubMed |
  • Potter, S. M., Wang, C.-M., Garrity, P. A., and Fraser, S. E., Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy., Gene 173: 25-31 (1996). | PubMed |
  • Pozzan, T., Mongillo, M., and Rudolf, R., Investigating signal transduction with genetically encoded fluorescent probes., European Journal of Biochemistry 270: 2343-2352 (2003). | PubMed |
  • Prasher, D. C., Using GFP to see the light., Trends in Genetics 11: 320-323 (1995).| PubMed |
  • Prasher, D.C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J., Primary structure of the Aequorea victoria green-fluorescent protein., Gene 111: 229-233 (1992). | PubMed |
  • Prasher, D.C., McCann, R.O., Longiaru, M., and Cormier, M.J., Sequence comparisons of complementary DNAs encoding aequorin isotypes., Biochemistry 26: 1326-32 (1987).| PubMed |
  • Prendergast, F. G. and Mann, K. G., Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskålea., Biochemistry 17: 3448-3453 (1978). | PubMed |
  • Prescott, M., Ling, M., Beddoe, T., Oakley, A. J., Dove, S., Hoegh-Guldberg, O., Devenish, R. J., and Rossjohn, J., The 2.2 Angstrom crystal structure of a pocilloporin pigment reveals a nonpolar chromophore conformation., Structure 11: 275-284 (2003).| PubMed |
  • Quillin, M. L., Anstrom, D. M., Shu, X., O'Leary, S., Kallio, K., Chudakov, D. M., and Remington, S. J., Kindling fluorescent protein from Anemonia sulcata: Dark-state structure at 1.38 Angstrom resolution., Biochemistry 44: 5774-5787 (2005). | PubMed |
  • Randers-Eichhorn, L., Albano, C. R., Sipior, J., Bentley, W. E., and Rao, G., On-line green fluorescent protein sensor with LED excitation., Biotechnology and Bioengineering 55: 921-926 (1997). | Biotechnol Bioeng ||
  • Reid, B. G. and Flynn, G. C., Chromophore formation in green fluorescent protein., Biochemistry 36: 6786-6791 (1997). | PubMed |
  • Rekas, A., Alattia, J. R., Nagail, T. Miyawki, A., and Ikura, M., Crystal structure of Venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity., Journal of Biological Chemistry 277: 50573-50578 (2002). | PubMed |
  • Remington, S. J., Negotiating the speed bumps to fluorescence., Nature Biotechnology 20: 28-29 (2002). | PubMed |
  • Remington, S. J., Wachter, R. M., Yarbrough, D. K., Branchaud, B., Anderson, D. C., Kallio, K., and Lukyanov, K. A., zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore., Biochemistry 44: 202-212 (2005). | PubMed |
  • Richards, B., Zharkikh, L., Hsu, F., Dunn, C., Kamb, A., and Teng, D. H., Stable expression of Anthozoa fluorescent proteins in mammalian cells., Cytometry 48: 106-12 (2002).| PubMed |
  • Rizzo, M. A. and Piston, D. W., Fluorescent protein tracking and detection., in Live Cell Imaging: A Laboratory Manual, Goldman, R. D. and Spector, D. L. (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pages. 3-23 (2005). | CSH Press ||
  • Rizzo, M. A., Springer, G. H., Granada, B., and Piston, D. W., An improved cyan fluorescent protein variant useful for FRET., Nature Biotechnology 22: 445-449 (2004). | PubMed |
  • Rizzuto, R., Brini, M., De Giorgi, F., Rossi, R., Heim, R., Tsien, R. Y., and Pozzan, T., Double labeling of subcellular structures with organelle-targeted GFP mutants in vivo., Current Biology 6: 183-188 (1996). | PubMed |
  • Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., and Pozzan, T., Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells., Current Biology 5: 635-642 (1995). | PubMed |
  • Robert, V., Gurlini, P., Tosello, V., Nagai, T., Miyawaki, A., Di Lisa, F., and Pozzan, T., Beat-to-beat oscillations of mitochondrial calcium concentration in cardiac cells., EMBO Journal 20: 4998-5007 (2001). | PubMed |
  • Robinson, L. C. and Marchant, J. S., Improved "optical highlighter" probes derived from Discosoma red fluorescent protein., Biophysical Journal 88: 1444-1457 (2005).| PubMed |
  • Romoser, V. A., Hinkle, P. M., and Persechini, A., Detection in living cells of calcium-dependent changes in the fluorescent emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence., Journal of Biological Chemistry 272: 13270-13274 (1997). | PubMed |
  • Rosenow, M. A., Huffman, H. A., Phail, M. E., and Wachter, R. M., The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation., Biochemistry 43: 4464-4472 (2004). | PubMed |
  • Rosenow, M. A., Patel, H. N., and Wachter, R. M., Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: Implications for the mechanism of chromophore formation., Biochemistry 44: 8303-8311 (2005). | PubMed |
  • Rudolf, R., Mongillo, M., Rizzuto, R., and Pozzan, T., Looking forward to seeing calcium., Nature Reviews Molecular Cell Biology 4: 579-586 (2003). | PubMed |
  • Sacchetti, A. and Alberti, S., Protein tags enhance GFP folding in eukaryotic cells., Nature Biotechnology 17: 1046 (1999). | PubMed |
  • Sacchetti, A., Cappetti, V., Crescenzi, C., Celli, N., Rotilio, D., and Alberti, S., Red GFP and endogenous porphyrins., Current Biology 9: R392-R393 (1999). | PubMed |
  • Sacchetti, A., Subramaniam, V., Jovin, T. M., and Alberti, S., Oligomerization of DsRed is required for the generation of a functional red fluorescent chromophore., FEBS Letters 525: 13-19 (2002). | PubMed |
  • Sakai, R., Repunte-Canonigo, V., Raj, C. D., and Knöpfel, T., Design and characterization of a DNA-coded, voltage-sensitive fluorescent protein., European Journal of Neuroscience 13: 2314-2318 (2001). | PubMed |
  • Salih, A., An exploration of light regulating pigments of reef building corals from macro- to micro- and nano-scales., in From Zero to Infinity, Nicholls, J. A. and Pailthorpe, B. A.(editors), The Science Foundation for Physics, Sydney, pp. 49-70 (2003).| University of Sydney ||
  • Salih, A., Cox, G., and Larkum, A., Cellular organization and spectral diversity of GFP-like proteins in live coral cells studied by single and multi-photon imaging and microspectroscopy., Proceedings of the International Society for Optical Engineering (SPIE) 4963: 194-200 (2003). | SPIE ||
  • Salih, A., Larkum, A., Cox, G., Kuhl, M., and Hoegh-Guldberg, O., Fluorescent pigments in corals are photoprotective., Nature 408: 850-853 (2000). | PubMed |
  • Salih, A., Larkum, A., Cronin, T., Wiedenmann, J., Szymczak, R., and Cox, G., Biological properties of coral GFP-type proteins provide clues for engineering novel optical probes and biosensors., Proceedings of the International Society for Optical Engineering (SPIE) 5329: 61-72 (2004). | SPIE ||
  • Sanger, J. W. and Sanger, J. M., Green fluorescent proteins improve myofibril research., Biophotonics International 8: 44-46 (2001). | Biophotonics International ||
  • Sankaranarayanan, S., De Angelis, D., Rothman, J. E., and Ryan, T. A., The use of pHluorins for optical measurements of presynaptic activity., Biophysical Journal 79: 2199-2208 (2000). | PubMed |
  • Sato, M., Hida, N., Ozawa, T., and Umezawa, Y., Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Ia and green fluorescent proteins., Analytical Chemistry 72: 5918-5924 (2000). | Anal Chem ||
  • Sato, M., Ozawa, T., Inukai, K., Asano, T., and Umezawa, Y., Fluorescent indicators for imaging protein phosphorylation in single living cells., Nature Biotechnology 20: 287-294 (2002). | PubMed |
  • Sauer, M., Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging., Proceedings of the National Academy of Sciences (USA) 102: 9433-9434 (2005). | PubMed |
  • Sawano, A. and Miyawaki, A., Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis., Nucleic Acids Research 28: E78 i-vii (2000). | PubMed |
  • Sawin, K. E. and Nurse, P., Photoactivation of green fluorescent protein., Current Biology 7: 606-607 (1997). | PubMed |
  • Schenk, A., Ivanchenko, S., Rocker, C., Wiedenmann, J., and Nienhaus, G. U., Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy., Biophysical Journal 86: 384-394 (2004). | PubMed |
  • Schmid, J. and Neumeier, H., Evolutions in Science Triggered by Green Fluorescent Protein (GFP)., ChemBioChem 6: 1149-56 (2005). | ChemBioChem ||
  • Scholz, O., Thiel, A., Hillen, W., and Niederweis, M., Quantitative analysis of gene expression with an improved green fluorescent protein., European Journal of Biochemistry 267: 1565-70 (2000). | PubMed |
  • Schwille, P., Kummer, S., Heikal, A. A., Moerner, W. E., and Webb, W. W., Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins., Proceedings of the National Academy of Sciences (USA) 97: 151-156 (2000).| PubMed |
  • Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y. A., Semenova, T. N., Ugalde, J. A., Meyers, A., Nunez, J. M., Widder, E. A., Lukyanov, S. A., and Matz, M. V., GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity., Molecular Biology and Evolution 21: 841-850 (2004). | PubMed |
  • Shaner, N. C., Campbell, R. E., Steinbach, Giepmans, B. N. G., Palmer, A. E., and Tsien, R. Y., Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein., Nature Biotechnology 22: 1567-1572 (2004).| PubMed |
  • Shaner, N., Steinbach, P., and Tsien, R. Y., A guide to choosing fluorescent proteins., Nature Methods 2: 905-909 (2005). | Nat Methods ||
  • Shav-Tal, Y., Darzacq, X., Shenoy, S. M., Fusco, D., Janicki, S. M., Spector, D. L., and Singer, R. H., Dynamics of single mRNPs in nuclei of living cells., Science 304: 1797-1800 (2004). | PubMed |
  • Shav-Tal, Y., Singer, R. H., and Darzacq, X., Imaging gene expression in single living cells., Nature Reviews Molecular Cell Biology 5: 856-862 (2004). | PubMed |
  • Shimomura, O., Structure of the chromophore of Aequorea green fluorescent protein., FEBS Letters 104: 220-222 (1979). | FEBS Lett ||
  • Shimomura, O., The discovery of aequorin and green fluorescent protein., Journal of Microscopy 217: 3-15 (2005). | PubMed |
  • Shimomura, O., Johnson, F. H., and Saiga, Y., Extraction, purification and properties of Aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea., Journal of Cellular and Comparative Physiology 59: 223-239 (1962). | PubMed |
  • Shimozono, S., Fukano, T., Nagai, T., Kirino, Y., Mizuno, H., and Miyawaki, A., Confocal imaging of subcellular calcium concentrations using a dual-excitation ratiometric indicator based on green fluorescent protein., Science's STKE 125: PL4 (2002).| PubMed |
  • Siegel, M. S. and Isacoff, E. Y., A genetically encoded optical probe of membrane voltage., Neuron 19: 735-741 (1997). | PubMed |
  • Siemering, K. R., Golbik, R., Sever, R., and Haseloff, J., Mutations that suppress the thermosensitivity of green fluorescent protein., Current Biology 6: 1653-1663 (1996).| PubMed |
  • Sinnecker, D., Voigt, P., Hellwig, N., and Schaefer, M., Reversible photobleaching of enhanced green fluorescent proteins., Biochemistry 44: 7085-7094 (2005). | PubMed |
  • Sniegowski, J. A., Lappe, J. W., Patel, H. N., Huffman, H. A., and Wachter, R. M., Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein., Journal of Biological Chemistry 280: 26248-26255 (2005).| PubMed |
  • Southward, C. and Surette, M., The dynamic microbe: green fluorescent protein brings bacteria to light., Molecular Microbiology 45: 1191-1196 (2002). | PubMed |
  • Stark, D. A. and Kulesa, P. M., Photoactivatable green fluorescent protein as a single-cell marker in living embryos., Developmental Dynamics 233: 983-992 (2005). | PubMed |
  • Stearns, T., The green revolution: Green fluorescent protein allows gene expression and protein localization to be observed in living cells., Current Biology 5: 262-264 (1995). | PubMed |
  • Steele, D., Cells Aglow., Howard Hughes Medical Institute Bulletin 17: 22-26 (2004).| HHMI Bulletin ||
  • Stepanenko, O. V., Verkhusha, V. V., Kazakov, V. I., Shavlovsky, M. M., Kuznetsova, I. M., Uversky, V. N., and Turoverov, K. K., Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, "dimer2", and DsRed1., Biochemistry 4: 14913-14923 (2004). | PubMed |
  • Su, W. W., Fluorescent proteins as tools to aid protein production., Microbial Cell Factories 4: 12 (2005). | PubMed |
  • Swaminathan, R., Hoang, C. P., and Verkman, A. S., Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion., Biophysical Journal 72: 1900-1907 (1997). | PubMed |
  • Takahashi, A., Yingpei, Z., Centonze, V. E., and Herman, B., Measurement of mitochondrial pH in situ., BioTechniques 30: 804-815 (2001). | PubMed |
  • Takemoto, K., Nagai, T., Miyawaki, A., and Miura, M., Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects., Journal of Cell Biology 160: 235-243 (2003). | PubMed |
  • Tavare, J. M., Fletcher, L. M., and Welsh, G. I., Using green fluorescent protein to study intracellular signalling., Journal of Endocrinology 170: 297-306 (2001). | PubMed |
  • Terry, B. R., Matthews, E. K., and Haseloff, J., Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy., Biochemical and Biophysical Research Communications 217: 21-27 (1995). | PubMed |
  • Terskikh, A. V., Fradkov, A. F., Ermakova, G., Zaraisky, A., Tan, P., Kajava, A., Zhao, X., Lukyanov, S., Matz, M., Kim, S., Weissman, I., and Siebert, P., "Fluorescent timer": Protein that changes color with time., Science 290: 1585-1588 (2000). | PubMed |
  • Terskikh, A. V., Fradkov, A. F., Zaraisky, A. G., Kajava, A. V., and Angres, B., Analysis of DsRed mutants: Space around the fluorophore accelerates fluorescence development., Journal of Biological Chemistry 277: 7633-7636 (2002). | PubMed |
  • Ting, A. Y., Kain, K. H., Klemke, R. L., and Tsien, R. Y., Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells., Proceedings of the National Academy of Sciences (USA) 98: 15003-15008 (2001). | PubMed |
  • Tinnefield, P. and Sauer, M., Branching out of single-molecule fluorescence spectroscopy: Challenges for chemistry and influence on biology., Angewandte Chemie International Edition 44: 2642-2671 (2005). | PubMed |
  • Toniolo, A, Olsen, S., Manohara, L., and Martinez, T.J., Conical intersection dynamics in solution: The chromophore of green fluorescent protein., Faraday Discussions 127: 149-163 (2004). | Faraday Discuss ||
  • Toniolo, A, Olsen, S., Manohara, L., and Martinez, T.J., Ultrafast excited state dynamics in the green fluorescent protein chromophore., in Femtochemistry and Femtobiology: Ultrafast Dynamics in Molecular Science, Douhal, A., and Santamaria, J. (eds.), Imperial College Press, London, pages 425-432 (2004). | Imperial College Press ||
  • Tozzini, V. and Giannozzi, P., Vibrational Properties of DsRed Model Chromophores., ChemPhysChem 6: 1786-1788 (2005). | ChemPhysChem ||
  • Truong, K., Sawano, A., Mizuno, H., Hama, H., Tong, K. I., Mal, T. K., Miyawaki, A., and Ikura, M., FRET-based in vivo calcium imaging by a new calmodulin-GFP fusion molecule., Nature Structural Biology 8: 1069-1073 (2001). | PubMed |
  • Tsien, R. Y., Building and breeding molecules to spy on cells and tumors., FEBS Letters 579: 927-932 (2005). | PubMed |
  • Tsien, R. Y., Rosy dawn for fluorescent proteins., Nature Biotechnology 17: 956-957 (1999). | PubMed |
  • Tsien, R. Y., The green fluorescent protein., Annual Review of Biochemistry 67: 509-544 (1998). | PubMed |
  • Tsien, R.Y. and Miyawaki, A., Seeing the Machinery of Live Cells., Science 280: 1954-55 (1998). | PubMed |
  • Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N., and Miyawaki, A., Semi-rational engineering of a coral fluorescent protein into an efficient highlighter., EMBO Reports 6: 233-238 (2005). | PubMed |
  • Tu, H., Xiong, Q., Zhen, S., Zhong, X., Peng, L., Chen, H., Jiang, X., Liu, W., Yang, W., Wei, J., Dong, M., Wu, W., and Xu, A., A naturally enhanced green fluorescent protein from magnificent sea anemone (Heteractis magnifica) and its functional analysis., Biochemical and Biophysical Research Communications 301: 879-885 (2003). | PubMed |
  • Tubbs, J.L., Tainer, J.A., and Getzoff, E.D., Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation., Biochemistry 44: 9833-40 (2005). | PubMed |
  • Tucker, K. L., In vivo imaging of the mammalian nervous system using fluorescent proteins., Histochemistry and Cell Biology 115: 31-39 (2001). | PubMed |
  • Tzfira, T., Tian, G.W., Lacroix, B., Vyas, S., Li, J., Leitner-Dagan, Y., Krichevsky, A., Taylor, T., Vainstein, A., and Citovsky, V., pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants., Plant Molecular Biology 57: 503-516 (2005). | PubMed |
  • Ugalde, J. A., Chang, B. S. W., and Matz, M. V., Evolution of coral pigments recreated., Science 305: 1433 (2004). | PubMed |
  • Van Roessel, P. and Brand, A. H., Imaging into the future: Visualizing gene expression and protein interactions with fluorescent proteins., Nature Cell Biology 4: E15-E20 (2002). | PubMed |
  • Van Thor, J. J., Gensch, T., Hellingwerf, K. J., and Johnson, L. N., Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222., Nature Structural Biology 9: 37-41 (2002). | PubMed |
  • Van Thor, J. J., Pierik, A. J., Nugteren-Roodzant, I., Xie, A., and Hellingwerf, K. J., Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy., Biochemistry 37: 16915-16921 (1998). | PubMed |
  • Vanderklish, P. W., Krushel, L. A., Holst, B. H., Gally, J. A., Crossin, K. L., and Edelman, G. M., Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer., Proceedings of the National Academy of Sciences (USA) 97: 2253-2258 (2000). | PubMed |
  • Verkhusha, V. V., Akovbian, N. A., Efremenko, E. N., Varfolomeyev, S. D., and Vrzheshch, P. V., Kinetic analysis of maturation and denaturation of DsRed, a coral-derived red fluorescent protein., Biochemistry (Moscow) 66: 1342-1351 (2001). | PubMed |
  • Verkhusha, V. V., Chudakov, D. M., Gurskaya, N. G., Lukyanov, S., and Lukyanov, K. A., Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins., Chemistry and Biology 11: 845-854 (2004). | PubMed |
  • Verkhusha, V. V., Kuznetsova, I. M., Stepanenko, O. V., Zaraisky, A. G., Shavlovsky, M. M., Turoverov, K. K., and Uversky, V. N., High stability of Discosoma DsRed as compared to Aequorea EGFP., Biochemistry 42: 7879-7884 (2003). | PubMed |
  • Verkhusha, V. V. and Lukyanov, K. A., The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins., Nature Biotechnology 22: 289-296 (2004). | PubMed |
  • Verkhusha, V. V., Otsuna, H., Awasaki, T., Oda, H., Tsukita, S., and Ito, K., An enhanced mutant of red fluorescent protein DsRed for double labeling and developmental timer of neural fiber bundle formation., Journal of Biological Chemistry 276: 29621-29624 (2001). | PubMed |
  • Verkhusha, V. V., Pozhitkov, A. E., Smirnov, S. A., Borst, J. W., van Hoek, A., Klyachko, N. L., Levashov, A. V., and Visser, A. J. W. G., Effect of high pressure and reversed micelles on the fluorescent proteins., Biochimica et Biophysica Acta 1622: 192-195 (2003).| PubMed |
  • Verkhusha, V. V. and Sorkin, A., Conversion of the monomeric red fluorescent protein into a photoactivatable probe., Chemistry and Biology 12: 279-285 (2005). | PubMed |
  • Voityuk, A. A., Michel-Beyerle, M.-E., and Rösch, N., Protonation effects on the chromophore of green fluorescent protein. Quantum chemical study of the absorption spectrum., Chemical Physics Letters 272: 162-167 (1997). | CPL ||
  • Voityuk, A. A., Michel-Beyerle, M.-E., and Rösch, N., Structure and rotation barriers for ground and excited states of the isolated chromophore of the green fluorescent protein., Chemical Physics Letters 296: 269-276 (1998). | CPL ||
  • Voss, T. C., Demarco, I. A., and Day, R. N., Quantitative imaging of protein interactions in the cell nucleus., BioTechniques 38: 413-424 (2005). | PubMed |
  • Vrzheshch, P. V., Akovbian, N. A., Varfolomeyev, S. D., and Verkhusha, V. V., Denaturation and partial renaturation of a tightly tetramerized DsRed protein under mildly acidic conditions., FEBS Letters 487: 203-208 (2000). | PubMed |
  • Wachter, R. M., Elsliger, M.-A., Kallio, K., Hanson, G. T., and Remington, S. J., Structural basis of spectra; shifts in the yellow-emission variants of green fluorescent protein., Structure 6: 1267-1277 (1998). | PubMed |
  • Wachter, R. M., King, B. A., Heim, R., Kallio, K., Tsien, R. Y., Boxer, S. G., and Remington, S. J., Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein., Biochemistry 36: 9759-9765 (1997).| PubMed |
  • Wachter, R. M. and Remington, S. J., Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate., Current Biology 9: R628-R629 (1999).| PubMed |
  • Wachter, R. M., Yarbrough, D., Kallio, K., and Remington, S. J., Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein., Journal of Molecular Biology 301: 157-171 (2000). | PubMed |
  • Wahlfors, J., Loimas, S., Pasanen, T., and Hakkarainen, T., Green fluorescent protein (GFP) fusion constructs in gene therapy research., Histochemistry and Cell Biology 115: 59-65 (2001). | PubMed |
  • Waldo, G. S., Standish, B. M., Berendzen, J., and Terwilliger, T. C., Rapid protein-folding assay using green fluorescent protein., Nature Biotechnology 17: 691-695 (1999).| PubMed |
  • Wall, M. A., Socolich, M., and Ranganathan, R., The structural basis for red fluorescence in the tetrameric GFP homolog DsRed., Nature Structural Biology 7: 1133-1138 (2000).| PubMed |
  • Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B., and Axel, R., Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain., Cell 112: 271-282 (2003). | PubMed |
  • Wang, L., Jackson, W. C., Steinbach, P. A., and Tsien, R. Y., Evolution of new nonantibody proteins via iterative somatic hypermutation., Proceedings of the National Academy of Sciences (USA) 101: 16745-16749 (2004). | PubMed |
  • Wang, L., Xie, J., Deniz, A. A., and Schultz, P. G., Unnatural amino acid mutagenesis of green fluorescent protein., Journal of Organic Chemistry 68: 174-176 (2003). | PubMed |
  • Ward, W. W. and Bokman, S. H., Reversible denaturation of Aequorea green-fluorescent protein: Physical separation and characterization of the renatured protein., Biochemistry 21: 4535-4540 (1982). | PubMed |
  • Ward, W. W., Cody, C. W., Hart, R. C., and Cormier, M. J., Spectrophotometric identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins., Photochemistry and Photobiology 31: 611-615 (1980). | Photochem Photobiol ||
  • Ward, W. W. and Cormier, M. J., An energy transfer protein in coelenterate bioluminescence: Characterization of the Renilla green-fluorescent protein., Journal of Biological Chemistry 254: 781-788 (1979). | PubMed |
  • Ward, W. W., Prentice, H. J., Roth, A. F., Cody, C. W., and Reeves, S. C., Spectral perturbations of the Aequorea green-fluorescent protein., Photochemistry and Photobiology 35: 803-808 (1982). | Photochem Photobiol ||
  • Weber, W., Helms, V., McCammons, J. A., and Langhoff, P. W., Shedding light on the dark and weakly fluorescent states of green fluorescent proteins., Proceedings of the National Academy of Sciences (USA) 96: 6177-6182 (1999). | PubMed |
  • Whitaker, M., Fluorescent tags of protein function in living cells., BioEssays 22: 180-187 (2000). | PubMed |
  • Wiedenmann, J., Elke, C., Spindler, K. D., and Funke, W., Cracks in the beta-can: Fluorescent proteins from Anemonia sulcata (Anthozoa, Actinaria)., Proceedings of the National Academy of Sciences (USA) 97: 14091-14096 (2000). | PubMed |
  • Wiedenmann, J., Ivanchenko, S., Oswald, F., and Nienhaus, G. U., Identification of GFP-like proteins in nonbioluminescent, azooxanthellate Anthozoa opens new perspectives for bioprospecting., Marine Biotechnology 6: 270-277 (2004). | PubMed |
  • Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Rocker, C., Salih, A., Spindler, K., and Nienhaus, G. U., EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion., Proceedings of the National Academy of Sciences (USA) 101: 15905-15910 (2004). | PubMed |
  • Wiedenmann, J., Schenk, A., Rocker, C., Girod, A., Spindler, K. D., and Nienhaus, G. U., A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria)., Proceedings of the National Academy of Sciences (USA) 99: 11646-11651 (2002). | PubMed |
  • Wiedenmann, J., Vallone, B., Renzi, F., Nienhaus, K., Ivanchenko, S., Röcker, C., and Nienhaus, G. U., Red fluorescent protein eqFP611 and its genetically engineered dimeric variants., Journal of Biomedical Optics 10: 1-7 (2005). | PubMed |
  • Wiegand, U. K., Duncan, R. R., Greaves, J., Chow, R. H., Shipston, M. J., and Apps, D. K., Red, yellow, green go! A novel tool for microscopic segregation of secretory vesicle pools according to their age., Biochemistry Society Transactions 31: 851-856 (2003).| PubMed |
  • Wiehler, J., von Hummel, J., and Steipe, B., Mutants of Discosoma red fluorescent protein with a GFP-like chromophore., FEBS Letters 487: 384-389 (2001). | PubMed |
  • Wilmann, P. G., Petersen, J., Devenish, R. J., Prescott, M., and Rossjohn, J., Variations on the GFP chromophore: A polypeptide fragmentation within the chromophore revealed in the 2.1 Angstrom crystal structure of a nonfluorescent chromoprotein from Anemonia sulcata., Journal of Biological Chemistry 280: 2401-2404 (2005). | PubMed |
  • Wilmann, P. G., Petersen, J., Pettikiriarachchi, A., Buckle, A. M., Smith, S. C., Olsen, S., Perugini, M. A., Devenish, R. J., Prescott, M., and Rossjohn, J., The 2.1 Angstrom crystal structure of the far-red fluorescent protein HcRed: Inherent conformational flexibility of the chromophore., Journal of Molecular Biology 349: 223-237 (2005). | PubMed |
  • Wouters, F. S., Verveer, P. J., and Bastiaens, P. I. H., Imaging biochemistry inside cells., Trends in Cell Biology 11: 203-211 (2001). | PubMed |
  • Wu, C., Liu, Huizhu, L., Crossen, R., Gruenwald, S., and Singh, S., Novel green fluorescent protein (GFP) baculovirus expression vectors., Gene 190: 157-162 (1997). | PubMed |
  • Xie, D. and Zeng, J., Electronic excitations of green fluorescent proteins: protonation states of chromophore model compound in solutions., Journal of Computational Chemistry 26: 1487-96 (2005). | PubMed |
  • Xu, C., Zipfel, W., Shear, J. B., Williams, R. M., and Webb. W. W., Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy., Proceedings of the National Academy of Sciences (USA) 93: 10763-10768 (1996). | PubMed |
  • Xu, X., Gerard, A. L. V., Huang, B. C. B., Anderson, D. C., Payan, D. G., and Luo, Y., Detection of programmed cell death using fluorescence energy transfer., Nucleic Acids Research 26: 2034-2035 (1998). | PubMed |
  • Yampolsky, I. V., Remington, S. J., Martynov, V. I., Potapov, V. K., Lukyanov, S., and Lukyanov, K. A., Synthesis and properties of the chromophore of the asFP595 chromoprotein from Anemonia sulcata., Biochemistry 44: 5788-5793 (2005). | PubMed |
  • Yang, F., Moss, L. G., and Phillips, G. N., The molecular structure of green fluorescent protein., Nature Biotechnology 14: 1246-1251 (1996). | PubMed |
  • Yang, T. T., Cheng, L., and Kain, S. R., Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein., Nucleic Acids Research 24: 4592-4594 (1996). | PubMed |
  • Yang, T. T., Kain, S. R., Kitts, P., Kondepudi, A., Yang, M. M., and Youvan, D. C., Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant., Gene 173: 19-23 (1996). | PubMed |
  • Yang, T. T., Sinai, P., Green, G., Kitts, P. A., Chen, Y.-T., Lybarger, L., Chervenak, R., Patterson, G. H., Piston, D. W., and Kain, S. R., Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein., Journal of Biological Chemistry 273: 8212-8216 (1998). | PubMed |
  • Yanushevich, Y. G., Staroverov, D. B., Savitsky, A. P., Fradkov, A. F., Gurskaya, N. G., Bulina, M. E., Lukyanov, K. A., and Lukyanov, S. A., A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins., FEBS Letters 511: 11-14 (2002). | PubMed |
  • Yarbrough, D., Wachter, R. M., Kallio, K., Matz, M. V., and Remington, S. J., Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Angstrom resolution., Proceedings of the National Academy of Sciences (USA) 98: 462-467 (2001). | PubMed |
  • Yokoe, H. and Meyer, T., Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement., Nature Biotechnology 14: 1252-1256 (1996). | PubMed |
  • Youvan, D. C. and Michel-Beyerle, E. M., Structure and fluorescence mechanism of GFP., Nature Biotechnology 14: 1219-1220 (1996). | PubMed |
  • Yu, D., Baird, G. S., Tsien, R. Y., and Davis, R. L., Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters., Journal of Neuroscience 23: 64-72 (2003). | PubMed |
  • Yu, Y. A., Szalay, A. A., Wang, G., and Oberg, K., Visualization of molecular and cellular events with green fluorescent proteins in developing embryos: a review., Luminescence 18: 1-18 (2003). | PubMed |
  • Zaccolo, M., De Giorgi, F., Cho, C. Y., Feng, L., Knapp, T., Negulescu, P. A., Taylor, S. S., Tsien, R. Y., and Pozzan, T., A genetically encoded, fluorescent indicator for cyclic AMP in living cells., Nature Cell Biology 2: 25-29 (2000). | PubMed |
  • Zaccolo, M., Magalhães, P., and Pozzan, T., Compartmentalisation of cAMP and calcium signals., Current Opinion in Cell Biology 14: 160-166 (2002). | PubMed |
  • Zaccolo, M. and Pozzan, T., Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes., Science 295: 1711-1715 (2002). | PubMed |
  • Zaccolo, M. and Pozzan, T., Imaging signal transduction in living cells with GFP-based probes., IUBMB Life 49: 375-379 (2000). | PubMed |
  • Zacharias, D. A., Sticky caveats in an otherwise glowing report: Oligomerizing fluorescent proteins and their use in cell biology., Science's STKE 131: PE23 (2002).| PubMed |
  • Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y., Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells., Science 296: 913-916 (2002). | PubMed |
  • Zagranichny, V. E., Rudenko, N. V., Gorokhovatsky, A. Y., Zakharov, M. V., Shenkarev, Z. O., Balashova, T. A., and Arseniev, A. S., zFP538, a yellow fluorescent protein from coral, belongs to the DsRed subfamily of GFP-like proteins but possesses the unexpected site of fragmentation., Biochemistry 43: 4764-4772 (2004). | PubMed |
  • Zapata-Hommer, O. and Griesbeck, O., Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP., BMC Biotechnology 3: 5 (2003). | PubMed |
  • Zaveer, M.S. and Zimmer, M., Structural analysis of the immature form of the GFP homologue DsRed., Bioorganic and Medicinal Chemistry Letters 13: 3919-22 (2003).| PubMed |
  • Zhang, J., Campbell, R. E., Ting, A. Y., and Tsien, R. Y., Creating new fluorescent probes for cell biology., Nature Reviews Molecular Cell Biology 3: 906-918 (2002). | PubMed |
  • Zhang, J., Ma, Y., Taylor, S. S., and Tsien, R. Y., Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering., Proceedings of the National Academy of Sciences (USA) 98: 14997-15002 (2001). | PubMed |
  • Zimmer, M., Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior., Chemical Reviews 102: 759-781 (2002). | PubMed |
  • Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J., and Muzyczka, N., A "humanized" green fluorescent protein cDNA adapted for high-level expression in mammalian cells., Journal of Virology 70: 4646-4654 (1996). | PubMed |
  • Zumbusch, A. and Jung, A., Single molecule spectroscopy of the green fluorescent protein: A critical assessment., Single Molecules 1: 261-270 (2000). | Single Molecules |

このページはお住まいの地域ではご覧いただくことはできません。

このページはお住まいの地域ではご覧いただくことはできません。