Evident LogoOlympus Logo

Fluorescence Correlation Spectroscopy

Section Overview:

Fluorescence correlation spectroscopy (FCS) is a powerful technique used to examine rapid fluctuations in fluorescence emission induced by low concentrations of diffusing labeled proteins and smaller molecules within a restricted volume. The dual-color analog, fluorescence cross-correlation spectroscopy (FCCS) is useful for determining molecular interactions and colocalization between two species emitting at different wavelengths. This section features a bibliography of literature sources for review articles and original research reports focused on fluorescence correlation (and cross-correlation) spectroscopy.

Literature Sources

  • Amediek, A., Haustein, E., Scherfeld, D., and Schwille, P., Scanning dual-color cross-correlation for dynamic co-localization studies of immobile molecules., Single Molecules 3: 201-210 (2002). | Single Molecules |
  • Bacia, K., Kim, S. A., and Schwille, P., Fluorescence cross-correlation spectroscopy in living cells., Nature Methods 3: 83-89 (2006). | PubMed |
  • Bacia, K., Majoul, I. V., and Schwille, P., Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis., Biophysical Journal 83: 1184-1193 (2002). | PubMed |
  • Bacia, K., Scherfeld, D., Kahya, N., and Schwille, P., Fluorescence correlation spectroscopy relates rafts in model and native membranes., Biophysical Journal 87: 1034-1043 (2004). | PubMed |
  • Bacia, K., Schuette, C. G., Kahya, N., Jahn, R., and Schwille, P., SNAREs prefer liquid-disordered over "raft" (liquid-ordered) domains when reconstituted into giant unilamellar vesicles., Journal of Biological Chemistry 279: 37951-37955 (2004).| PubMed |
  • Bacia, K. and Schwille, P., A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy., Methods 29: 74-85 (2003). | PubMed |
  • Bastiaens, P. I. and Pepperkok, R., Observing proteins in their natural habitat: the living cell., Trends in Biochemical Sciences 25: 631-637 (2000). | PubMed |
  • Baudendistel, N., Muller, G., Waldeck, W., Angel, P., and Langowski, J., Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo., European Journal of Chemical Physics and Physical Chemistry 6: 984-990 (2005).| PubMed |
  • Berland, K. M., Fluorescence correlation spectroscopy: a new tool for quantification of molecular interactions., Methods in Molecular Biology 261: 383-398 (2004). | PubMed |
  • Briddon, S. J., Middleton, R. J., Cordeauz, Y., Flavin, F. M., Weinstein, J. A., George, M. W., Kellam, B., and Hill, S. J., Quantitative analysis of the formation and diffusion of A1-adenosine receptor-antagonist complexes in single living cells., Proceedings of the National Academy of Sciences, USA 101: 4673-4678 (2004). | PubMed |
  • Brock, R., Vamosi, G., Vereb, G., and Jovin, T. M., Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy., Proceedings of the National Academy of Sciences, USA 96: 10123-10128 (1999). | PubMed |
  • Burkhardt, M., Heinze, K. G., and Schwille, P., Four-color fluorescence correlation spectroscopy realized in a grating-based detection platform., Optical Letters 30: 2266-2268 (2005). | PubMed |
  • Chen, Y., Tekmen, M., Hillesheim, L., Skinner, J., Wu, B., and Muller, J. D., Dual-color photon-counting histogram., Biophysical Journal 88: 2177-2192 (2005). | PubMed |
  • Chen, Y., Wei, L. N., and Muller, J. D., Unraveling protein-protein interactions in living cells with fluorescence fluctuation brightness analysis., Biophysical Journal 88: 4366-4377 (2005). | PubMed |
  • Dauty, E. and Verkman, A. S., Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery., The Journal of Biological Chemistry 280: 7823-7828 (2005). | PubMed |
  • Digman, M. A., Brown, C. M., Sengupta, P., Wiseman, P. W., Horwitz, P. W., and Gratton, E., Measuring fast dynamics in solutions and cells with a laser scanning microscope., Biophysical Journal 89: 1317-1327 (2005). | PubMed |
  • Elson, E. L., Fluorescence correlation spectroscopy measures molecular transport in cells., Traffic 2: 789-796 (2001). | PubMed |
  • Fahey, P. F., Koppel, D. E., Barak, L. S., Wolf, D. E., Elson, E. L., and Webb, W. W., Lateral diffusion in planar lipid bilayers., Science 195: 305-306 (1977). | PubMed |
  • Haupts, U., Maiti, S., Schwille, P., and Webb, W. W., Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy., Proceedings of the National Academy of Sciences USA 95: 13573-13578 (1998).| PubMed |
  • Haustein, E. and Schwille, P., Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy., Methods 29: 153-166 (2003). | PubMed |
  • Haustein, E. and Schwille, P., Single-molecule spectroscopic methods., Current Opinion in Structural Biology 14: 531-540 (2004). | PubMed |
  • Hebert, B., Costantino, S., and Wiseman, P. W., Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells., Biophysical Journal 88: 3601-3614 (2005). | PubMed |
  • Heinze, K. G., Jahnz, M., and Schwille, P., Triple-color coincidence analysis: one step further in following higher order molecular complex formation., Biophysical Journal 86: 506-516 (2004). | PubMed |
  • Heinze, K. G., Koltermann, A., and Schwille, P., Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis., Proceedings of the National Academy of Sciences, USA 97: 10377-10382 (2001). | PubMed |
  • Heinze, K. G., Rarbach, M., Jahnz, M., and Schwille, P., Two-photon fluorescence coincidence analysis: Rapid measurements of enzyme kinetics., Biophysical Journal 83: 1671-1681 (2002). | PubMed |
  • Hwang, L. C. and Wohland, T., Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation., Journal of Chemical Physics and Physical Chemistry 5: 549-551 (2004). | PubMed |
  • Kettling, U., Koltermann, A., Schwille, P., and Eigen, M., Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy., Proceedings of the National Academy of Sciences, USA 95: 1416-1420 (1998). | PubMed |
  • Kim, S. A., Heinze, K. G., Bacia, K., Waxham, M. N., and Schwille, P., Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry., Biophysical Journal 88: 4319-4336 (2005). | PubMed |
  • Kim, S. A., Heinze, K. G., Waxham, M. N., and Schwille, P., Intracellular calmodulin availability accessed with two-photon cross-correlation., Proceedings of the National Academy of Sciences, USA 101: 105-110 (2004). | PubMed |
  • Kim, S. A. and Schwille, P., Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience., Current Opinion in Neurobiology 13: 583-590 (2003). | PubMed |
  • Kohl, T., Haustein, E., and Schwille, P., Determining protease activity in vivo by fluorescence cross-correlation analysis., Biophysical Journal 89: 2770-2782 (2005).| PubMed |
  • Kohl, T., Heinze, K. G., Kuhlemann, R., and Schwille, P., A protease assay for two-photon cross correlation and FRET analysis based solely on fluorescent proteins., Proceedings of the National Academy of Sciences, USA 99: 12161-12166 (2002).| PubMed |
  • Koltermann, A., Kettling, U., Bieschke, J., Winkler, T., and Eigen, M., Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: high throughput screening for enzyme activity., Proceedings of the National Academy of Sciences, USA 95: 1421-1426 (1998). | PubMed |
  • Krichevsky, O. and Bonnet, G., Fluorescence correlation spectroscopy: the technique and its applications., Reports on Progress in Physics 65: 251-297 (2002).| Rep Prog Phys |
  • Levene, M. J., Korlach, J., Turner, S. W., Foquet, M., Craighead, H. G., and Webb, W. W., Zero-mode waveguides for single-molecule analysis at high concentrations., Science 299: 682-686 (2003). | PubMed |
  • Maiti, S., Haupts, U., and Webb, W. W., Fluorescence correlation spectroscopy: diagnostics for sparse molecules., Proceedings of the National Academy of Sciences, USA 94: 11751-11757 (1997). | PubMed |
  • Medina, M. A. and Schwille, P., Fluorescence correlation spectroscopy for the detection and study of single molecules in biology., Bioessays 24: 758-764 (2002). | PubMed |
  • Patel, R. C., Kumar, U., Lamb, D. C., Eid, J. S., Rocheville, M., Grant, M., Rani, A., Hazlett, T., Patel, S. C., Gratton, E., and Patel, Y. C., Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells., Proceedings of the National Academy of Sciences, USA 99: 3294-3299 (2002). | PubMed |
  • Politz, J. C., Browne, E. S., Wolf, D. E., and Pederson, T., Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells., Proceedings of the National Academy of Sciences, USA 95: 6043-6048 (1998). | PubMed |
  • Rigler, R. and Elson, E. L., Fluorescence Correlation Spectroscopy: Theory and Applications, Springer, Berlin, 487 pages (2001). | Amazon |
  • Ruan, Q., Cheng, M. A., Levi, M., Gratton, E., and Mantulin, W. W., Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS)., Biophysical Journal 87: 1260-1267 (2004). | PubMed |
  • Rusu, L., Gambhir, A., McLaughlin, S., and Radler, J., Fluorescence correlation spectroscopy studies of peptide and protein binding to phospholipid vesicles., Biophysical Journal 87: 1044-1053 (2004). | PubMed |
  • Saito, K., Wada, I., Tamura, M., and Kinjo, M., Direct detection of caspase-3 activation in single live cells by cross-correlation analysis., Biochemical and Biophysical Research Communications 324: 849-854 (2004). | PubMed |
  • Schwille, P., Fluorescence correlation spectroscopy and its potential for intracellular applications., Cell Biochemistry and Biophysics 34: 383-408 (2001). | PubMed |
  • Schwille, P., Haupts, U., Maiti, S., and Webb, W. W., Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation., Biophysical Journal 77: 2251-2265 (1999). | PubMed |
  • Schwille, P., Kummer, S., Heikal, A. A., Moerner, W. E., and Webb, W. W., Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins., Proceedings of the National Academy of Sciences, USA 97: 151-156 (2000). | PubMed |
  • Schwille, P., Meyer-Almes, F. J., and Rigler, R., Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution., Biophysical Journal 72: 1878-1886 (1997). | PubMed |
  • Stoevesandt, O., Kohler, K., Fischer, R., Johnston, I. C., and Brock, R., One-step analysis of protein complexes in microliters of cell lysate., Nature Methods 2: 833-835 (2005).| PubMed |
  • Thews, E., Gerken, M., Eckert, R., Zapfel, J., Tietz, C., and Wrachtrup, J., Cross talk free fluorescence cross correlation spectroscopy in live cells., Biophysical Journal 89: 2069-2076 (2005). | PubMed |
  • Thompson, N. L., Fluorescence correlation spectroscopy., in Topics in Fluorescence Spectroscopy, Volume 1: Techniques, Lakowicz, J. R. (ed.), Plenum, New York, pages 337-378 (1991). | Amazon |
  • Wang, Z., Shah, J. V., Chen, Z., Sun, C. H., and Berns, M. W., Fluorescence correlation spectroscopy investigation of a GFP mutant-enhanced cyan fluorescent protein and its tubulin fusion in living cells with two-photon excitation., Journal of Biomedical Optics 9: 395-403 (2004). | PubMed |
  • Weisshart, K., Jungel, V., and Briddon, S. J., The LSM 510 Meta-ConfoCor2 system: an integrated imaging and spectroscopic platform for single-molecule detection., Current Pharmaceutical Biotechnology 5: 135-154 (2004). | PubMed |

このページはお住まいの地域ではご覧いただくことはできません。

このページはお住まいの地域ではご覧いただくことはできません。